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Building a Set of Items
for Measurement

Tt would be a useful reference point to consider that there exists a family of
Rasch models for measurement (Andrich, 1988; Masters & Wright, 1984). In
this chapter we look at the use of the simplest model, the model for analyzing di-
chotomous data. This was, in fact, the model on which Georg Rasch did his ini-
tial work. Since then, the procedures for performing dichotomous Rasch analysis
have been developed further by a number of researchers (foremost among them,
Ben Wright from Chicago; Wright & Stone, 1979), whereas others have ex-
tended the basic Rasch model to include analysis of Likert-type rating scales
(David Andrich, Perth, Australia, 1978a, 1978b, 1978c), responses that could be
given partial credit (Geoff Masters, Melbourne, Australia, 1982), and testing sit-

uations in which many facets other than just person and item needed to be meas-

ured (Mike Linacre, Chicago, 1989). In each case, many researchers could claim

that they contributed to the development of the Rasch-family models. However,

the researchers that have been cited certainly are the most energetic proponents of
these particular models. Each of these models from the Rasch family is more com-

plex than the preceding one, but has the basic dichotomous model at its core.

Therefore, if the researcher chooses not to use an added feature of any more com-
plex model, it just collapses to the preceding, simpler model.

At the basis of all Rasch modeling is the model developed first: the model for
analyzing dichotomous data, which are data that have simply two values, usually
0 and 1. It is easy to mistake this level of data as being “nominal,” the sort of
data we get when we categorize hair color as being brunette or blonde, or when
we categorize a subject’s sex as male or female. However, there is an important
distinction concerning the data that is appropriate for analysis with the Rasch di-
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chotomous model: The value of 1 is meaningfully gre.:ater th?r{ the valuc? of 0,
erely different from O. This might sound pedantic, but it is a very impor-
et moint If we allocate the code of 0 for the females in a sample, and 1 for the
tan:i we; intend just to differentiate them in terms of sex, showing that the sex
mfaoené group of respondents is different from that of the other group. However,
Svhen we use the code 1 to indicate the correct.answer toa math prgblem a'nd 0
as the code for the incorrect answer, we are saying something ve.ry dlfferfan; I;Itot
only is the correct answer different from the. incorrect answer; it alsodlsh € ei
than the incorrect answer in a fundamentally important way. We regard th?l é:ror
rect answer as superior to the incorr.ect answer, :al.ld we routinely regcalxr cth etn
who get the correct answer as show1_ng more ability than thgse who do no .d ote
then that Rasch modeling is appropriate only when we can impute some order in
the allocation of scores such that 1 is better than 0 (as 1s a COIT?Ct res'ponlse ver-
gus an incorrect response). Order does not apply to the case in which 1 (e.g.,
male) is merely different from 0 (e.g., fer_nale), but certainly not l.Jett.er. vt th
Two important points should be mentioned here. The ﬁrst point is .t at d'g
codes 1 and 0 merely record our observation of what th.e child actually did or di
not do in response to the test prompt, not what the child could or could not do.
Although we all might try to make measures out o_f the performances that we ac-
tually observe and record, and we might do this just so we can make Fleclnsl_orl:ls
about the people who make the performances, we do not have any magic insig (’;
into how competent each person really is. All we have recorded is wt_xat the chil
did or did not do in response to the test prompt, not what the child could or
not do if given another response opportunity. ‘ o
cou’ll“(;‘le second pgint is that researchers can save themselves a bit of hair tearing m
the future by remembering always to use the .co'de of 0 to }'ecord the lowest lezlfell
of performance on any test item. Although this is obvious in the 0 = wrong anks
= right format, it is not as obvious in coding a rating scale or awarding part marks.
With Rasch analysis, it is a convenient and common practice to allocate 0 to indi-
cate the lowest level of response and 1 the next level above' that and s0 on. Qne
routinely used format for the collection of dichotomous data 1s tBe mliltlple-chowe
test. Such a test would have only one “completely correct” or best” answer that
would receive the score of 1 for that item, with all the other Q1stract.ors or alterna-
tive answers receiving the score of 0, although a partial-credit scoring and model
might also be arranged from multiple-choice data (see chapter 7).

ANALYZING DICHOTOMOUS DATA:
THE BLOT

In keeping with an important premise of this volume, that thc? key worked exam(—1
ples will be derived from the research of developmenta}lsts, educators, an

others trying to solve actual measurement probler.n.s, the dichotomous data dis-
cussed in this chapter come from a test of cognitive development for adoles-
cents: Bond’s Logical Operations Test (BLOT; Bond, 1976/1995). The BLOT
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was developed to provide a test suitable for administration to whole-class groups
at a time, as a partial replacement for the individual interview technique devel-
oped and used by Jean Piaget and his colleagues in Geneva. The idea was to de-
velop a multiple-choice test with response sheets that could be computer scored,
so that a child’s cognitive development could be categorized as more or less de-
veloped according to the total number of test items the child answered correctly.
Of course, this general principle applies to most educational and psychological
tests, so the principles outlined in the following discussion have far wider appli-
cation than just to those interested in Piaget’s idea of formal operational think-
ing.

One theme reiterated throughout this volume is that good tests have, as their
basis, a very clear and explicit understanding concerning the line of inquiry the
test is trying to put into practice—what was once termed “construct validity.” Of
course, this understanding might be revealed in a number of different ways. It
could be part of a general psychological theory explained in one or more text-
books by some renowned guru, or part of a treatise on the exact sequence of de-
velopment during a certain period of life. It might derive from a set of curricu-
lum statements in a particular subject area at the grade school or high school
level, or it might just as easily be taken from detailed theoretical or conceptual
analysis of a field of knowledge being tested (e.g., math or spelling). In medical
settings, it might be the understandings of rehabilitation progress after stroke,
gleaned by medical professionals who reflect on the effects of their practice.

In the case of the BLOT, the specifications for the items were taken one by
one from chapter 17 of the textbook entitled The Growth of Logical Thinking
(Inhelder & Piaget, 1958). In this chapter Piaget spelled out in detail each of the
logical operations that he thought were central to mature thought. The test devel-
oper’s task then was to represent each of these logical specifications as accu-
rately as possible in multiple-choice test items that would make sense to preado-
lescents and adolescents without requiring any specific background knowledge.
As can be imagined, some items were rewritten a number of times as a result of
trial runs with high school students.

Here, the key role of the test developer in putting the substantive theory into
measurement practice is clear. In this case, it might have been handy to have
Professor Piaget write the items, but then he was not interested in this aspect of
group assessment at all, In all test development, the success of the enterprise
will be determined largely by how well the intentions of the theory writer, the
classroom teacher, or the medical specialist have been converted into items, not
merely any items, but items such that the performances of the target audience
will reveal exactly those intentions and not some other sort of ability. Clearly
then, the test developer needs some detailed understanding of the substantive
area of inquiry as well as a great deal of commitment to the implementing of
that understanding into measurement practice.

The BLOT is a 35-item multiple-choice test that operationalizes item-by-item
each of the schemas of the formal operational stage identified by Inhelder and
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piaget (1958). Each item comprises an item stem of two to four shor,t sentencez
ed by a set of four or five alternative responses. The students’ response
fonoWllected on computer scan sheets and computer scored. The following mter-
o n shows us the sense that Rasch modeling can make of the BLOT and al:
pretaﬂ(; to determine how much faith we can place in the idea that adolescents
o “tl've development can be represented by the total raw score on the BLOT‘.
cog\l;/l}:en using the BLOT, we generate a data file that looks like the following

sample:

11111111110110101101011111111011111
111llllllllllll111111111111011111ll
11010111111111011111011111101011111
11111111111111111111101111111111111
11111111111101111111011111111111111
11111111111110111101011111111111111
111111111111011111110111111111111ll
11111111111111111111111111101011111
11111111111111111111111101111111111
11011111011111011111011111000110111
11111110111111111111011011111101111
11111110111111111111111111101001111
11111111111111011111010111101111111
11111111111101111101111111111111111
11lllllll11101111101111111111111111
11111111111101111111011111101110111

etc.

Each row represents the performances of one stuc’lent on the 35 BLOT 1ttems.
Given the principle of dichotomous scoring, the 1’s represent .the correc ari-
swers and the 0’s represent the incorrect answers: The score for item 1 is ‘1111) c;)l'—
umn 1, for item 2 in column 2, and so on up to 1terp 35 in column 35. Wl}: tnlls
example, there is no student ID. The file is set up in the input prder of the s (;
dents’ results. Although the BLOT can be computer scored, this file was type
in as a Word (text-only) file by the investigator.

ITEM DIFFICULTY LOCATIONS
AND ERRORS

For the first part of the interpretation, we have included the results of t};e (lit;r)l:
analysis only, as Fig. 4.1. This is in exactly the same format as that dfsscn Zt o
the developmental pathway analogy introduced in che.lpter 3.: easy items e
bottom and difficult items at the top. The error of the item d1ff"1cu1ty est:nf{i e
shown by the comparative size of the item circle, vyhereas items that 11
Rasch model are located between the parallel dotted lines.
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A number of things can be immediately appreciated as a result of trying to
find meaning in Fig. 4.1, First, it seems to represent some sort of developmental
acquisition of ability: There are easy items, not-so-easy items, more difficult
items, and even more difficult items. For example, items 6 and 12 are the very
easiest BLOT items, and items 21 and 28 are extremely difficult in comparison
with the others, whereas item 4 sits exactly at the midpoint (0) on the item diffi-
culty scale. Given the range of varying difficulties of BLOT items, we might
reasonably expect that a group of suitable students would show a range of devel-
opmental abilities on this test. It is worth noting that the extremely easy items (6
and 12) have the least precise estimates, whereas the error estimates for the re-
maining 33 items are comparatively quite small.

A glance at the dotted lines reveals that the fit of the BLOT to the Rasch
model’s expectations is pretty good. Locations for just two of the items (i.e.,
items 21 and 30) do not seem to fit satisfactorily to the same developmental
pathway as do the remaining items. Items 21 and 30, therefore, should be candi-
dates for closer inspection before they are included routinely in students’ BLOT
scores in the future. This is good evidence for reasonably inferring that the abil-
ity underlying the BLOT items follows a single line of inquiry. The Piagetian
conception of cognitive development seems to be a reasonable description of
that line of inquiry, given its explicit use in the BLOT development phase.
Although the item difficulties span five complete units on the logit scale, Fig.
4.1 shows that more than two logits of that development are represented by
merely four items: 6 and 12 at the bottom of the scale and 21 and 28 at the top.
However, from below —1 logits to above +1 logits, we have approximately 30
closely packed and overlapping items. The consequence of this is that we would
find it very hard to locate persons precisely at the extreme ends of the scale rep-
resented by the BLOT items, but we could have a great deal of confidence if we
had to make important decisions relating to students who perform in the -1 to
+1 logits zone.

Although it is rather artificial to consider item performance separately from
person performance, the purpose of this chapter is to demonstrate the develop-
ment of a dichotomous test. At this point, suffice it to say that the distribution of
person abilities among children who have been given the BLOT follows the
same general pattern as that for itemns. The vast majority of person performances
fit the Rasch model, whereas the distribution of persons along the ability scale is
not as clumped as for items. This latter observation can be confirmed by refer-
ring to Fig. 4.2: the item—person map for the BLOT analysis.

ITEM FIT

Table 4.1 includes the item statistics from a Rasch analysis of dichotomous
BLOT data. For each item number, the estimate of item difficulty and its accom-
panying error estimate in logits are given. These should correspond in a one-to-
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one way with the pictorial representation in the earlier figure, although only
some of the BLOT items are numbered: the higher the difficulty estimate, the
further up the pathway, and the larger the error estimate, the larger the item step-
ping-stone. However, the columns that contain the fit statistics are not so easily
interpretcd.

Generally speaking, fit statistics focus on two aspects of fit, each of which is
routinely reported in both an unstandardized and a standardized form. In Table
4.1 the two aspects of fit reported are item infit and outfit. The unstandardized
form is reported as mean squares, and the standardized form is reported as a ¢
statistic, in which acceptable values are those routinely accepted for ¢ (i.e., =2 to
+2). The mean square is the unstandardized form of the fit statistic and merely
the mean, or average value, of the squared residuals for that item. The residual
values represent the differences between the Rasch model’s theoretical expecta-
tion of item performance and the performance actually encountered for that item
in the data matrix. Larger residuals mean an item with larger differences between
how the item should have performed (i.e., Rasch model expectations) and how it
actually performed. Residuals are squared, following the usual statistical conven-
tion, to make all “actual minus expected” differences positive so they can be
added to give a sum of differences. The concept of fit is the subject of chapter 12.

In the standardized versions of fit statistics, the mean square value is trans-
formed, with the sample size kept in mind, to produce a statistic with a distribu-
tion just like #. The “fit” issue will be raised again and again in this volume and
everywhere that Rasch analysts gather to chat (e.g., see Smith, 2000).

The infit and outfit statistics adopt slightly different techniques for assessing
an item’s fit to the Rasch model. The infit statistic gives relatively more weight
to the performances of persons closer to the item value. The argument is that
persons whose ability is close to the item’s difficulty should give a more sensi-
tive insight into that item’s performance. The outfit statistic is not weighted, and
therefore is more sensitive to the influence of outlying scores. It is for this rea-
son that users of the Rasch model routinely pay more attention to infit scores
than to outfit scores. Aberrant infit scores usually cause more concern than large
outfit statistics. Of course, outfit statistics do have meaning, and we return to the
issues involved in interpreting infit and outfit statistics in chapter 12.

INTERPRETING RASCH ANALYSIS
OUTPUT

To make this analysis work, you would need to tell your Rasch software:

The name of the data file and where it is located.
The format of the data: easy in this case, 35 items (one item per column usu-
ally is the default).
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TABLE 4.1
BLOT Item Difficulty Estimates With
Associated Error Estimates for Each Ttem

, Infit Outfit
Difficulty Error
Item Estimate Estimate .Sj};fzre S]’;[z(jZZe I”{if O":ﬁt
; :g;g 0.26 0.98 0.69 0.0 -0.8
: 0.74 0.26 1.01 0.75 0.1 -0.6
" 0.00 0.2 0.98 0.9 -0.2 -0.5
. _0.98 0.22 1.00 0.88 0.0 -0.4
; _2.42 0.28 0.98 0.76 -0.1 0.5
¢ —0.64 24217 1.06 0.83 0.3 0.1
! 0.85 0. 5 0.97 0.65 -0.1 -1.0
; 0.18 .19 0.91 1.00 -1.1 0.1
" _0.19 0.21 1.07 0.97 0.7 0.0
11 0’13 8.23 0.92 0.68 -0.7 -1.1
. —1.76 0.21 1.02 0.96 0.2 -0.1
- 1.00 36 0.69 0.24 -1.1 -1.5
o ’0.70 0.19 1.16 1.32 2.0 1.8
o 1.00 g.26 1.15 1.32 1.0 0.9
" _0.30 0.19 0.96 0.84 -0.4 -0.9
s 0.39 0.;3 1.13 1.03 1.0 0.2
" __0‘05 0. 0.87 0.75 -1.4 -1.2
. 0.47 0.52 0.9 0.74 -0.9 ~-1.0
" ‘0.84 0.2 1.01 1.05 0.1 0.3
i 2.33 O. 7 0.91 0.81 ~0.5 ~0.4
2 _1.06 O.2 1.27 1.75 2.6 3.4
2 0.35 .29 0.91 1.69 0.4 1.4
" 0.22 0.21 1.06 0.92 0.7 -0.3
25 0.51 0.21 0.89 1.03 -1.1 0.2
o 0.78 3.2 1.07 1.26 0.8 12
x _0.91 2 0.89 0.75 -1.3 -14
i 1‘53 0.27 0.85 0.62 0.8 -0.9
o _0.46 0.19 1.12 1.23 1.4 1.4
» 1.07 8.24 0.94 0.71 —0.4 0.8
o 0.18 .19 1.19 1.15 23 0.9
y 1.14 0.21 1.07 1.55 0.7 2.0
= —0.52 8.19 0.96 0.85 -0.5 -0.9
" _0.4 .25 1.1 0.93 0.7 -0.1
" 41 0.24 1 0.79 0.1 -0.6
-0.30 0.23 0.93 0.73 ——0:5 —0:9

Note. Fit statistics are shown in their natural (mean quare and st ed 10 tand
) 1 ( S ) andardized forms (S ardized

The type of analysis: easy again, dichotomous is the usual default.
The name and location for the output file.

. Most versions of Rasch analysis software produce some form of the item—per-
on map shown as Fig. 4.2, in which the items are indicated by the item number,
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and each individual person’s performance is represented by an “X.” The delight-
ful thing about this Rasch representation of data analysis is that many of the per-
son and item relations are shown in meaningful pictorial, or “map,” form.

The logit scale, which is the measurement unit common to both person ability
and item difficulty, is displayed down the middle of the map in Fig. 4.2. Because
the logit scale is an interval scale, the equal distances anywhere up and down
that scale have equal value. Therefore, item 15 is as much more difficult than
item 4 as item 4 is more difficult than item 5. The distances between are equal (1
logit)- Of course, the same equal-value principle applies to differences in person
Jocations as well. Persons and items are located on the map according to their
ability and difficulty estimates, respectively.

As a convenient starting point for the mapping process, the mean of the item
difficulties is adopted by default as the 0 point. In this case, ignoring the error of
measurement for a moment, item 4 is calculated as having that exact difficulty
estimate (0 logits), s0 it is located at the 0 point on the item—person map. Person
Jocations are plotted so that any person has a 50% probability of succeeding
with an item located at the same point on the logit scale. For example, a person
with an ability estimate of 0 logits has a 50% probability of succeeding on item

4. That same person would have a greater than 50% chance of succeeding on

items less difficult than item 4 (say, items 18, 29, and 5) and a less than 50%
probability of succeeding on items more difficult than item 4 (say, items 17, 25,
and 26). The 50% limen, or threshold, is adopted routinely by Rasch analysis, al-
though some Rasch software allows for variations from this value to be speci-
fied. For example, those committed to the concept of mastery learning might
want to use the 80% threshold that is used routinely to assess mastery.

With those basic principles in mind, we now can tell immediately from
the item—person map in Fig. 4.2 that the BLOT is too easy for a sample like this
one. Just look where the persons are located in comparison with the items.
First, the person distribution is top-heavy in comparison with the item distribu-
tion. Second, the top 50 BLOT performers (one third of this sample) are tar-
geted by only two questions: items 71 and 28. The Rasch output tells us as
well that three candidates topped out on the BLOT with a perfect score of 35 of
35. From a general test-development perspective, this would be regarded as a
serious inadequacy in a test. If this is the usual sort of target group for this
test, then the test needs some more questions of a difficulty like that of 21
and 28 so the abilities of the high-fliers can be more precisely estimated.
Also, we would need some even more difficult questions to raise the “ceiling”
of the test.

A key point o remember, however, is that Rasch analysis item—person maps
usually report the relations between the two key variables only: item difficulty
estimates and person ability estimates. Other key parts of the analysis—the
precision of those estimates (error), the fit of the items, the fit of the persons,
the reliabilities of the person and jtem estimates—are reported in detail in the

output tables.
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For items we have the following information that is useful:

Summary of Item Estimates

Mean 0.00
sD 0.95
SD (adjusted) 0.92
Reliability of estimate 0.94

Fit Statistics

Infit Mean Square Outfit Mean Square

Mean 1.00 Mean 0.95
SD 0.11 SD 0.31
Infit t OCutfit ¢t
Mean 0.09 Mean -0.05
SD 0.98 sSDh 1.10

0 items with =zero scores
0 items with perfect scores

We already know that the mean of item estimates is located at 0 (by default),
and that the standard deviation for item estimates is nearly 1. We can confirm
the latter by referring to the item—person map: The vast majority of items are lo-
cated in the narrow band between +1 and -1 logits. The reliability of the item
difficulty estimates is a very high .94ona0to 1 scale. Item reliability can be in-
terpreted on this 0 to 1 scale, much in the same way as Cronbach’s alpha is in-
terpreted, or it can be transformed to an item separation index, wherein the reli-
ability is calculated as the number of standard errors of spread among the items
(see Fox & Jones, 1998, or Wright & Masters, 1982, for an explanation). Item
reliability and item separation refer to the ability of the test to define a distinc-
tion hierarchy of items along the measured variable. The higher the number, the
more confidence we can place in the replicability of item placement across other
samples. Therefore, the item reliability index of .94 means that we can quite
readily rely on this order of item estimates to be replicated when we give the
BLOT to other samples for whom it is suitable.

The summary of fit statistics also can be informative. Unstandardized fit esti-
mates (i.e., mean squares) are modeled by the Rasch algorithm to have a mean
of 1. The actual unstandardized item fit statistics for the BLOT have their means
very close to the expected 1, with the infit mean squares showing little spread
from that ideal and the outfit mean squares much greater variation.

In the standardization of fit scores, the mean square values are transformed so
they are distributed like ¢, with a mean of 0 and a standard deviation of 1. There-
fore, we should not be surprised to see the preceding raw item mean squares
transformed into near-0 values. But for how many of the BLOT items is this in-
formation applicable? The little note at the bottom of the output reminds us that
all the BLOT items were useful for this sample. An item would not be useful for
discriminating ability among members of this group if everyone was successful
with it (item too easy) or everyone got it wrong (item too hard).
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COMPARING PERSONS AND ITEMS

When we turn our focus toward the summary of person performances, we ﬁnd
that Rasch modeling has the distinct advantage of applying the same fmalyﬂcal
logic, and therefore the same logic of interpretation, to persons as it does to

items.

Mean 1.56
sh 1.30
sp (adjusted) 1.17

Reliability of estimate 0.81

infit Mean Square outfit Mean Sguare

Mean 0.99 Mean 0.95
SD 0.13 SD 0.46
Infit t outfit t
Mean 0.13 Mean 0.10
sSD 0.58 sSh 0.63

0 cases with zero scores
3 cases with perfect scores

The person ability estimate mean of +1.56 is the first indicator that this sam-
ple finds this test comparatively easy. Figure 4.3 shows three posgble rélatxons
between item difficulty and person ability."The mean person estimate (i.e., the
group average) would be closer to 0 for a well-matched test (Fig. 4.3b)..A tough
test would yield a mean person estimate with a large negative value (Fig. 4.3c¢).
The standard deviation of 1.30 for person estimates indicates greater spread of
person measures Or variation in those measures than with item measures. The re-
liability of the person ability estimates is high at .81, which is not as reliable as
the item separations, but more than acceptable nonetheless.

This corroborates the targeting problem we identified from the item—person
map. Although we can rely on this order of person estimates to be replicate'd
when we give these persons another test like the BLOT, in the current analysis
we have better information about the items than we do about the persons, S0 the
item estimates are more reliable. In other words, the performances of 150 per-
sons give us more good information about the 35 BLOT items than th<? 3§
BLOT items give about the 150 persons. From consideration of the three distri-
butions in the item—person maps of Fig. 4.3, we could expect the best person
separability index in case b, where the match between items and persons is the
best. In case c, the difficult test, both item and person reliability would be lower:
The least able persons have no items to distinguish between them, Whereas .the
toughest questions have no persons sufficiently able to provide good information
about them.
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ple, (b) well-matched to the sample, and (c) relatively difficult for the sample.
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Again, the person fit summary statistics are equally good. The mean of the
infit mean squares at 0.99 and the outfit mean squares at 0.95 are very close to
the Rasch-modeled expectations of 1. Consequently, they produce standardized
fit ¢ values just greater than 0. The spread in, or variation of, modeled fit scores
for persons (infit # SD = 0.58 and outfit # SD = 0.63) suggests that the vast ma-
jority of person ability estimates will have error estimates well inside the con-
ventionally acceptable range of -2 to +2.

THE THEORY-PRACTICE DIALOGUE

Of course, every test developer and user should try to discern what the results
from the performance of the items and persons in practice have to say about the
substantive theory being investigated, and should try to decide what the theory
tells about the persons and items under investigation. This should always be
seen as an ongoing dialectical process. We have included a little of it here to in-
dicate the sort of meanings that might be attributed to the results of the analysis
shown earlier.

The analysis provides pretty good evidence that the items work well together
to represent one underlying path of inquiry or ability. Given that the specifica-
tions for the logical structure of each and every item were lifted directly from
the Inhelder and Piaget (1958) text, this could be seen to confirm the idea that
Piaget’s model for adolescent intelligence is coherent in itself. At least psycho-
metric evidence points to “something” and not “many things” as the object of in-
quiry. Moreover, whatever this ability is, it also is evident in the BLOT-answer-
ing behavior of a bunch of suitable subjects: 150 adolescent schoolchildren.

Because both the items and the persons were shown to behave in sufficiently
lawful and predictable ways, it is reasonable to conclude that this part of
Piaget’s theory and the BLOT interpretation of it are certainly worth the effort
of continued refinement and investigation.

The ceiling effect on the BLOT continues to be an ongoing problem: The
most cognitively developed kids top out on the test. Although that amounts to
only 3 of the 150 tested for this chapter (at age 15), we could reasonably expect
that more and more of these students would “hit the ceiling” as we tracked their
development over time. This is further complicated to the extent that some
Rasch analysis software routinely imputes an ability estimate for those who get a
perfect score, whereas other software packages ignore the perfect scorers be-
cause they do not have enough information to provide an accurate estimate.

Clearly, the BLOT needs more difficult items based on Piaget’s specifications if
we intend to use it to estimate accurately the cognitive development of our more
intellectually able teenagers.

The spread of items, or the lack of spread, on the item—person map suggests
that some of the BLOT items are redundant: The area from 0 to -1 logits is satu-
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rated with items. It seems that a number of the particular intellectual skills incor-
porated into BLOT items are very much like other skills/items, and that it would
not be necessary to include them all in a parsimonious test. Indeed, dropping
some of the psychometrically redundant items in favor of more difficult items
would remedy two of the apparent deficiencies of the BLOT.

Of course, psychometrically redundant and theoretically redundant are two
different but related perspectives on the theory-practice nexus: In the first
round, the practice tells us that the conceptualization of the theory has a lot go-
ing for it, but that a more useful test could be developed by going back to the
theory to find specifications for further item development and rationalization.

Software control files for this analysis and their explanations appear as fol-
lows:

QUEST:

title BLOT for Chapter Four
data bond87.txt

format items 5-39

est

show>>BLOT.out

show items>>Blot.items

quit

Line 1 gives a name to the output.

Line 2 tells QUEST which file has the data.

Line 3 that indicates that the BLOT responses are in columns 5 to 35.
Line 4 commands QUEST to perform a Rasch estimation.

Line 5 directs the general output to a file called BLOT.out.

Line 6 directs the item statistics output to a file called Blot.items.

WINSTEPS:

&INST

TITLE='BLOT for Chapter Four’
NI=35

ITEM1=5

NAME1=1

IFILE=BLOT.IF

&END

Item 1

Item 2

Item 35

END NAMES
11111111110110101101011111111011111
111111111113111111131111111101111111
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11010lllll1111011111011111101011111

etc.

Line 1 contains a command that must begin every WINSTEPS file.

Line 2 provides a title for the output.

Line 3 indicates the number of items in the test.

Line 4 identifies the starting column for the data. . . .

Line 5 identifies the starting column for the person 1dent1ﬁc§t10n number.
Line 6 directs the item statistics output to a file called Bl.ot.%f. .
Line 7 indicates the end of the commands and the beginning of the item
;?rrxr;essé to 10 give a line-per-item name. Only the first two and the last BLOT

items are named here.

Line 11 indicates an end to the names. o 7
Line 12 etc. ASCII data file, like the 0’s and 1°s shown earlier in the chapter,

follows immediately after this line.



