Martin-Lơf Test

evaluate unidimensionality
test whether two sets of items form a Rasch scale

Idea:
similar to Andersen's LR Test - focus now on items the items are partitioned into two subsets of k_{1} and k_{2} items

$$
L R_{M L}=2 \ln \left(\frac{L_{c}}{L_{c}^{(1)} \cdot L_{c}^{(2)}} \cdot q\right) \quad q=\frac{\prod_{r}\left(\frac{n_{r}}{N}\right)^{n_{r}}}{\prod_{r}\left(\frac{n_{r}}{N}\right)^{n_{r}}}
$$

product of likelihoods for subsets the same as for whole set
$\boldsymbol{r}=\left(r_{1}, r_{2}\right)^{\prime}$, score patterns on the two subtests $\left(r_{1}=0, \ldots, k_{1}\right.$ and $\left.r_{2}=0, \ldots, k_{2}\right), n_{r}$ is number of persons obtaining pattern \boldsymbol{r} $r=r_{1}+r_{2}$ (sum score), n_{r} accordingly

Psychometric Methods 2010/11
2

Nonparametric ('exact') Tests

Martin-Lơf Test

$$
L R_{M L}=2\left(\sum_{\boldsymbol{r}} n_{\boldsymbol{r}} \ln \left(\frac{n_{\boldsymbol{r}}}{N}\right)-\sum_{r} n_{r} \ln \left(\frac{n_{r}}{N}\right)-\ln L_{c}+\ln L_{c}^{(1)}+\ln L_{c}^{(2)}\right)
$$

$L R_{M L}$ has an asymptotic χ^{2}-distribution with $d f=k_{1} k_{2}-1$
> MLoef(rmod, splitcr = "median")
Martin-Loef-Test (split criterion: median)
LR-value: 8.009
Chi-square df: 8
p-value: 0.433
> MLoef(rmod, splitcr $=c(1,1,1,1,0,0))$
$>$ MLoef (rmod, splitcr $=c(1,1,1,1,0,0))$
Martin-Loef-Test (split criterion: user-defined)
R-value: 7.934
Chi-square df:
p-value: 0.338

Nonparametric ('exact') Tests

Idea:
Parameter estimates depend only on the marginal totals r and s if the Rasch model fits the data, all binary matrices with the same marginals are equally likely
for any statistic of the data matrix, one can approximate the null distribution (i.e., the distribution if the Rasch model is valid)
take a random sample from the collection of equally likely data matrices
construct the observed distribution of the statistic
one can then simply determine the exceedence probability of the statistic in the observed sample (its p-value)
and thus construct a nonparametric test of the Rasch model

Nonparametric Tests (cont'd)

sample space: $\boldsymbol{\Sigma}_{r s}$ (all possible matrices with fixed \boldsymbol{r} and \boldsymbol{s})
the distribution is uniform over of $\Sigma_{r s}$
for each data matrix $X, X \in \Sigma_{r s}: p(X)=\frac{1}{\# \boldsymbol{\Sigma}_{r s}}$
$\# \Sigma_{r s}$ can be huge
for a 12×12 table with all $r=s=2$ this is $21,959,547,410,077,200$
algorithmic difficulty is to draw uniform random samples
three approaches:

- Ponocny(2001) (simple Monte Carlo)
- Chen(2005) (importance sampling)
- Verhelst, Hatzinger \& Mair (2007) (MCMC, in eRm)

Psychometric Methods 2010/11

Nonparametric ('exact') Tests

Nonparametric Tests

Procedure:

- X_{0} observed data matrix
- simulate n Rasch-conform matrices X_{1}, \ldots, X_{n} with fixed margins as in X_{0}
- calculate a test-statistics $T^{(0)}$ for X_{0}
- calculate $T^{(1)}, \ldots, T^{(2)}$ for X_{1}, \ldots, X_{n}

Test:

- count number x of the $T^{(\cdot)}$'s which exceed T_{0} giving $p=x / n$
- if $p \leq \alpha$ reject H_{0}

Advantage:

- arbitrary specific tests statistics can be constructed
- valid and powerful, even in small samples
- easily to realise in eRm
using eRm: rsampler()
(from package RaschSampler)
> rmat <- rsampler(stress, rsctrl(burn_in = 100, n_eff = 100, seed = 123))
$>$ summary (rmat)
Status of object rmat after call to RSampler:

$$
\begin{aligned}
& \mathrm{n}=100 \\
& \mathrm{k}=6
\end{aligned}
$$

burn_in = 100
n_eff = 100
step $=16$
seed $=123$
tfixed $=$ FALSE
tfixed $=$ FALS
n_tot $=101$
outvec contains 10100 elements

Psychometric Methods 2010/11 6

Nonparametric ('exact') Tests

Local Dependence

T_{1} : checks for local dependence via increased inter-item correlations for item pairs: cases are counted with equal responses on both items.

$$
T_{1}(X)=\sum_{v} \delta_{i j}\left(x_{v i}, x_{v j}\right), \quad \delta()=1 \text { if } x_{v i}=x_{v j}, 0 \text { otherwise }
$$

$\mathbf{T}_{\mathbf{2}}$: checks for local dependence to detect model deviating subscales via increased dispersion of subscale person rawscores.

$$
T_{2}(X)=\operatorname{Var}_{v}\left(r_{v}^{(\mathcal{S})}\right), \text { where } r_{v}^{(\mathcal{S})}=\sum_{i \in \mathcal{S}} x_{v i}
$$

pattern	r			
10000	1			
11000	2			
11100	3			
11110	4			
11110	4	$\quad \operatorname{Var}(r)>\operatorname{Var}\left(r^{\prime}\right) \quad$	pattern	r^{\prime}
:---	:---			
10100	2			
10011	3			
01100	2			
01101	3			
10101	3			

using eRm: NPtest()
$\mathrm{T}_{1}:$
> t 1 <- NPtest(stress, $\mathrm{n}=100$, method = "T1") t1
Nonparametric RM model test: T1 (local dependence - increased inter-item correlations)
(counting cases with equal responses on both items)
Number of sampled matrices: 100
Number of Item-Pairs tested: 15
Item-Pairs with one-sided $\mathrm{p}<0.05$
$(1,3)(3,5)$
$0.01 \quad 0.04$

Psychometric Methods 2010/11

DIF

\mathbf{T}_{4} : checks for group anomalies (DIF) via too high (low) raw scores on item(s) for specified group

$$
T_{4}(X)=\sum_{v \in \mathcal{G}} x_{v i} \text { where } \mathcal{G} \text { is any subgroup }
$$

Unequal Discrimination

T_{7} : checks for lower discrimination (2PL) in item subscale via counting cases with response 1 on more difficult and 0 on easier items.
The test is global (a single statistic) for the subscale

$$
T_{7}(X)=-\sum_{i, j \in \mathcal{S}} \delta\left(x_{i}<x_{j} \wedge s_{i}>s_{j}\right)
$$

T_{2} :

t21 <- NPtest(stress, $\mathrm{n}=100$, method = "T2", idx = 1:3)
Nonparametric RM model test: T2 (local dependence - model deviating subscales)
(dispersion of subscale person rawscores)
Number of sampled matrices: 100
Items in subscale: 123
Statistic: variance
ne-sided p-value: 0.09
t22 <- NPtest(stress, $\mathrm{n}=100$, method $=$ "T2", idx $=c(1,2,6)$,
$+{ }^{+}$t22
Nonparametric RM model test: T2 (local dependence - model deviating subscales)
(dispersion of subscale person rawscores)
Number of sampled matrices: 100
Items in subscale: 126
Statistic: mean absolute deviation
one-sided p-value: 0.77

Psychometric Methods 2010/11

using eRm: NPtest()

T_{4} :
age <- sample(20:90, 100, replace = TRUE)
> age <- age < 30
t41 <- NPtest(stress, $\mathrm{n}=100$, method $=$ "T4", idx $=1: 3$, group = age) > t41
Monparametric RM model test: T4 (Group anomalies - DIF)
(counting high raw scores on item(s) for specified group)
Number of sampled matrices: 100
Items in Subscale: 123
Group: age $n=10$
one-sided p-value: 0.72
T_{7} :
t7 <- NPtest(stress, $\mathrm{n}=100$, method $=$ "T7", idx $=1: 3$)
$>$ t7
Nonparametric RM model test: T7 (different discrimination - 2PL)
(counting cases with response 1 on more difficult and 0 on easier item)
Number of sampled matrices: 100
Item Scores:
123
1
one-sided p-value: 0.95
these are just a few examples (we will see others later) Ponocny (2001) gives a systematic and various more examples

