Polytomous Models

extension to more than two response categories $h=0,1, \ldots, m$
nominal responses (multidimensional):

Part 8: Polytomous Models

Partial Credit Model (PCM) and Rating Scale Model (RSM)
ordinal responses (unidimensional):

Partial Credit Model (PCM; Masters, 1982)

$$
P\left(X_{v i h}=1\right)=\frac{\exp \left[h \theta_{v}-\beta_{i h}\right]}{\sum_{l=0}^{m_{i}} \exp \left[l \theta_{v}-\beta_{i l}\right]}
$$

introducing the restrictions $\theta_{v h}=h \theta_{v}$ $\beta_{i h}$'s describe item-category combinations number of categories may vary across items (m_{i})
alternative formulation:

$$
P\left(X_{v i}=h\right)=\frac{\exp \left[h\left(\theta_{v}-\beta_{i}\right)+\omega_{h i}\right]}{\sum_{l=0}^{m_{i}} \exp \left[l\left(\theta_{v}-\beta_{i}\right)+\omega_{l i}\right]}
$$

$\omega_{h i}$ are category parameter, have also interpretation as cumulative thresholds

The Polytomous Multidimensional RM

$$
P\left(X_{v i}=h \mid \theta_{v h}, \beta_{i h}\right)=\frac{\exp \left(\theta_{v h}-\beta_{i h}\right)}{1+\exp \left(\theta_{v h}-\beta_{i h}\right)}
$$

there are h latent dimensions
$X_{v i} \ldots$ person v scores in category h of item i
$\theta_{v h} \ldots$...location of person v on latent trait h
$\beta_{i h} \ldots$ location of item i on h-th latent trait

Psychometric Methods 2010/11 2

Polytomous Models

CCs for the PCM

ICC plot for item 12

Derivation of the PCM

basic idea: ordered performance levels
example: three-steps mathematic item: $\sqrt{\frac{7.5}{0.3}-16}=$?

	Performance Levels						
	0		1		2		3
7.5/0.3 = ?	0	$\overrightarrow{\text { first step }}$	1				
$25-16=?$				$\xrightarrow[\text { second step }]{ }$	2		
$\sqrt{9}=?$					2	$\xrightarrow[\text { third step }]{ }$	3

each step can be modelled by a RM:
$\phi_{v i 1}=\pi_{1} /\left(\pi_{0}+\pi_{1}\right), \phi_{v i 2}=\pi_{2} /\left(\pi_{1}+\pi_{2}\right), \ldots$

Psychometric Methods 2010/11

Category Probability Curves

Derivation of the PCM (cont'd)

first step: response is 0 or 1

$$
\phi_{v i 1}=\frac{\exp \left[\theta_{v}+\tau_{i 1}\right]}{1+\exp \left[\theta_{v}+\tau_{i 1}\right]}=\frac{\pi_{1}}{\left(\pi_{0}+\pi_{1}\right)}
$$

second step: response is 1 or 2 (cannot be 0 or 3)

$$
\phi_{v i 2}=\frac{\exp \left[\theta_{v}+\tau_{i 2}\right]}{1+\exp \left[\theta_{v}+\tau_{i 2}\right]}=\frac{\pi_{2}}{\left(\pi_{1}+\pi_{2}\right)}
$$

$\tau_{i h}$ are difficulties of reaching level h in item i
must always be ordered since sufficient statistics $s_{i h}$ are ordered (there cannot be more persons reaching level h than $h-1$)
only difference to the RM is that $\pi_{h}+\pi_{h-1}<1$ since $\sum_{h} \pi_{h}=1$

Psychometric Methods 2010/11 6

Polytomous Models

Derivation of the PCM (cont'd)

general expression:

$$
\pi_{v i h}=\frac{\exp \left[\sum_{j=0}^{h}\left(\theta_{v}-\tau_{i j}\right)\right]}{\sum_{l=0}^{m_{i}} \exp \left[\sum_{j=0}^{l} \theta_{v}-\tau_{i j}\right]} \quad h=0,1, \ldots, m_{i} \quad\left(\sum_{l=0}^{0} \ldots \equiv 0\right)
$$

this is the PCM or alternatively

$$
\pi_{v i h}=\frac{\exp \left[h \theta_{v}-\sum_{j=0}^{h} \tau_{i j}\right]}{\sum_{l=0}^{m_{i}} \exp \left[l \theta_{v}-\sum_{j=0}^{l} \tau_{i j}\right]} \quad \beta_{i h}=\sum_{j=1}^{h} \tau_{i j}, \quad \tau_{i 0}=0
$$

$\pi_{v i h}$ is the probability that person v reaches level h step difficulties $\beta_{i h}$ can be estimated independently of θ_{v} (CML) the sufficient statistic for θ is h, the count of successfully completed steps

Derivation of the PCM (cont'd)

how about hierarchical dependence?
RM requires one parameter for each item and probabilities being independent
alternative view of β :
instead of ordered level difficulty it can be seen as difficulty of each successive step

- third step, e.g., is from level 2 to level 3
- difficulty of this step governs probability to complete this step (to level 3)
- i.e., the probability of making 3 rather than 2 (once having reached 2)
it says nothing about other steps, they depend on θ and the other β 's

The Rating Scale Model (RSM)

derived in a different context (Andrich, 1978)
can be seen as special case of the PCM
if we simplify the PCM by $\omega_{h i}=\omega_{h}$ for all i and m_{i} is m

$$
\pi_{v i h}=\frac{\exp \left[h\left(\theta_{v}-\beta_{i}\right)+\omega_{h}\right]}{\sum_{l=0}^{m_{i}} \exp \left[l\left(\theta_{v}-\beta_{i}\right)+\omega_{l}\right]}
$$

this is sometimes called 'equidistant' scoring
we assume, that the distances between the categories are equal across all items
used for 'Likert Scales'
often too restrictive
cannot detect possible violation of 'ordinality'
in the derivation of the model and normalise τ as $\sum \tau_{j}=0$ then - β_{i} is mean of the threshold locations $-\tau_{j}$ are the distances to the thresholds
ω 's are cumulative τ 's, i.e., $\omega_{i h}=\sum_{j=1}^{h} \tau_{i j}$

Threshold Formulation

$\beta_{i j}$ can be rewritten as $h \beta_{i}+\omega_{i h}$ giving

$$
\pi_{v i h}=\frac{\exp \left[h \theta_{v}-\beta_{i h}\right]}{\sum_{l=0}^{m_{i}} \exp \left[l \theta_{v}-\beta_{i l}\right]}=\frac{\exp \left[h\left(\theta_{v}-\beta_{i}\right)+\omega_{i h}\right]}{\sum_{l=0}^{m_{i}} \exp \left[l\left(\theta_{v}-\beta_{i}\right)+\omega_{i l}\right]}
$$

ω 's can be interpreted as category 'difficulty' parameters when using

$$
\phi_{v i j}=\frac{\exp \left[\theta_{v}+\tau_{i j}\right]}{j+\exp \left[\theta_{v}+\tau_{i j}\right]}=\frac{\exp \left[\theta_{v}-\left(\beta_{i}+\tau_{j}\right)\right]}{j+\exp \left[\theta_{v}+\left(\beta_{i}+\tau_{j}\right)\right]}
$$

Comparison RSM vs PCM

R commands

main functions concerning fit of polytomous models:

- PCM (data) fits the PCM and generates object of class Rm
- RSM (data) fits the RSM and generates object of class Rm
- thresholds (rmobj) displays the itemparameter estimates as thresholds
- all other functions are the same as previously presented (except for plotjointICC())

PCM Example

Data: Eurobarometer 71.1 (Jan/Feb 2009)

Question Q20:
6 Items on satisfaction with aspects of everyday life
qa20_1: HOUSING
qa20_2: AREA
a20 3: LIVING STANDARD
a20-4: STATE OF HEALTH
qa20-5: MEDICAL SERVICES
ga20 6: JOB OPPORTUNITIES
responses recoded (for this example):
(0) not at all satisfactory
. (3) very satisfactory

Italian subsample, $n=1009$ (NAs removed)

Psychometric Methods 2010/11	14

PCM Example

Analysis using eRm

\# data
load(file="zacatI.Rdata")
pM<-PCM (zacatI [, 1:6]
thresholds (pM)
plotPImap(pM)
\#
\# check the mode
LRtest(pM)
\# items 1, 3, 4 inappropriate response pattern
\# let's have a look at the distribution of the response patterns apply(zacatI[,1:6],2,table) \# response distribution
\#
\# rawscores
r<-rowSums(zacatI[,1:6])
median(r)
mean(r)
attach (zacatI)
table(r,QA2O_1) \# suggests to split: <=8,>8

Analysis using eRm (cont'd)

\# look at possible split values for other item
table(r, QA20_3) \# 'too good' to split
table(r,QA2O_4) \# either at 6, 7 or 8
\#
\# let's try sex
lrs<-LRtest(pM, splitcr=SEX)
1 rs
\#
\# let's try age
lra<-LRtest(pM,splitcr=AGE) \# significant
lra
\# again inappropriate response patterns
\#
\# now Item 1
table(QA2O_1,AGE) \# no cat 1 response for youngest category
\# collapse age categories
age3<-ifelse(AGE>1, AGE-1, AGE)
lra3<-LRtest(pM,splitcr=age3) \# still significant
lra3

Analysis using eRm (cont'd)

\# plot estimates
beta3<-as.matrix(as.data.frame(lra\$betalist)
beta3<- -beta3 \# difficulty parameters
pairs(beta3, lower.panel=panel.smooth, upper.panel=panel.smooth)
\# one with value very large value
table(age3, QA2O_6) \# few responses in category 3
\#
\# check if RSM is possible
rM<-RSM (zacatI[,1:6])
devdiff<-2*(pM\$loglik-rM\$loglik)
dfdiff<-pM\$npar-rM\$npar
1-pchisq(devdiff,dfdiff)
\# no
\# further steps can be taken by collapsing categories, covariate levels,...
\#
detach(zacatI) \# don't forget

