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Item response theory (IRT) has become one of the most popular scoring frame-
works for measurement data. IRT models are used frequently in computerized
adaptive testing, cognitively diagnostic assessment, and test equating. This article
reviews two of the most popular software packages for IRT model estimation,
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996) and MULTILOG
(Thissen, 1991), which are for the first time available on a single CD-ROM with
new features. Most prominently, the number of items to be calibrated and
examinees to be scored is now limited only by memory capacities of the hardware,
MULTILOG has an interactive Windows-oriented process for creating basic com-
mand file syntax, and both BILOG-MG and MULTILOG come with a new graphics
interface that displays numerous curves relevant to IRT analyses in a professional
format. This article reviews the models that are and are not estimable with these
programs and describes the fundamental ideas of the underlying estimation algo-
rithms without providing detailed derivations. Moreover, the user-friendliness of
both programs is assessed with a user in mind who is interested in easy-to-use IRT
estimation programs within a Windows point-and-click environment. Both pro-
grams fulfill such an expectation to a large degree; yet, this review also points out
some obstacles that someone relatively unfamiliar to IRT or syntax programming
might have to overcome to obtain meaningful results.

Item response theory (IRT) has become one of the most popular scoring frame-
works for measurement data. IRT models are used frequently in computerized
adaptive testing, cognitively diagnostic assessment, and test equating. However,
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IRT is not so much a theory as it is an umbrella term for a variety of measure-
ment models, ranging from basic unidimensional models for dichotomously and
polytomously scored items and their multidimensional analogues to models that
incorporate information about cognitive subprocesses that influence the overall
item response process. Even if all available models could be collected and esti-
mated with a single software program, the differences in model structure and re-
quired estimation routines make this prohibitive. Thus, having software pro-
grams available that estimate at least the most commonly encountered IRT
models is a major practical benefit. Several programs exist for this purpose and
the programs BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996),
MULTILOG (Thissen, 1991), PARSCALE (Muraki & Bock, 1997), and
TESTFACT (Wilson, Wood, & Gibbons, 1991) have proven particularly useful
and reliable over the last 15 years for many applications. These four programs
are now available for the first time in a Windows format on a single CD-ROM.
This article reviews the first two programs in this package, BILOG-MG and
MULTILOG. For this review, I follow the guidelines proposed by Gierl and
Ackerman (1996), who raise questions about a software program’s quality of
item and examinee parameter estimation, its flexibility and ease of use, the com-
prehensiveness of its output, and the adequacy and timeliness of technical sup-
port. See Kim (1997) for a detailed description on installation features and sam-
ple runs for an older version of BILOG, whose results are generally applicable
to the newer version as well.

This article is organized as follows: The next section provides an overview of
currently available IRT models and shows which models are estimable with
BILOG-MG and MULTILOG. The following section overviews the estimation
theory incorporated into these programs that should be accessible for users who
are comfortable with reading basic mathematical equations without intricate
derivational steps. This is followed by a review of the two programs with particular
attention paid to the types of knowledge the user needs to execute a successful
analysis of measurement data.

This review assumes as a basic user someone who is familiar with the advan-
tages of IRT, has a data set with item response data, and potentially has some
background information on examinees at hand that he or she would like to cali-
brate with either BILOG-MG or MULTILOG. This review does not presume
that the user is a trained measurement theorist, because most users with such
training would be familiar with simple programming tasks and might find even
relatively cumbersome interfaces and complex output strings acceptable. On the
contrary, the availability of a software program for Windows implicitly signals
the intent of its designers to make these programs accessible to users primarily
or exclusively comfortable with point-and-click interfaces, such as an applied
measurement analyst who would use other Windows-driven software programs
for statistical analysis.
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A BRIEF OVERVIEW OF IRT MODELS

The number of IRT models available to measurement analysts has increased
considerably in the last 15 years due to increasing computer power and a de-
mand for richer and more meaningful inferences grounded in complex data
structures. The developments in modeling were intertwined with developments
in estimation theory, most notably Bayesian estimation with associated Markov
chain Monte Carlo (MCMC) algorithms (Patz & Junker, 1999a, 1999b; Rupp,
Dey, & Zumbo, in press). The popularity of the IRT framework has also entailed
numerous overviews in book and journals, and many connections between IRT
and other statistical estimation frameworks such as factor analysis,
generalizability theory, and structural equation modeling have been made repeat-
edly (e.g., McDonald, 1999; Mellenbergh, 1995; Muthén, 2002; Rupp, 2002; see
also van der Linden & Hambleton, 1997). The following overviews the range of
IRT models that have been proposed in the literature to be able to understand
better the place that BILOG-MG and MULTILOG occupy in the model estima-
tion realm.

Before beginning, however, the reader should note that all IRT models esti-
mable with BILOG-MG and MULTILOG are based on the three assumptions
of local independence, monotonicity, and unidimensionality. The first as-
sumption, local independence, states that the conditional probability of ob-
serving any response vector can be expressed as a product, across all items
and examinees, of the probabilities of observing the individual response
probabilities so that the response probabilities are independent at the local
item level.

Formally, for I items, J examinees, and with X denoting the manifest response
variable as well as θ denoting the latent predictor variable,

( ) ( )P P X xij ij
j

J

i

I

X x= = =
==

∏∏θ θ
11

. The second assumption, monotonicity, refers

to the fact that the item characteristic curves (ICCs), which trace the response
probabilities as a function of the latent variable θ, are nondecreasing functions in θ.
The third assumption, unidimensionality, refers to the fact that θ is assumed to be a
unidimensional random variable and not a multidimensional random vector. Note
that the last two assumptions are implicit when a model is chosen whereas the first
one is implicitly used in the parameter estimation process. Lack of model fit and
investigations of lack of invariance (LOI) such as differential item functioning
(DIF) and item parameter drift (IPD) are attributable to violations of at least one of
these three assumptions.

With these notions at hand, we can now look at several IRT models available in
the literature and the subsets of these that are estimable with BILOG-MG and
MULTILOG.
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Models for Dichotomous Data (BILOG-MG and MULTILOG)

Basic unidimensional IRT models for dichotomous scores (e.g., right–wrong,
forced–choice) model, for each item separately, the log-odds of the probability of a
correct response for examinees as a function of a latent variable θ and one or more
item parameters. The number of item parameters and function type are used to la-
bel the models and so the one-parameter logistic (1PL) model includes one estima-
ble item parameter, the item difficulty parameter βj, whereas the two-parameter lo-
gistic (2PL) model contains an additional estimable item discrimination parameter
αj, the three-parameter logistic (3PL) model contains an additional estimable item
lower asymptote or pseudo-guessing parameter γj, and the four-parameter logistic
(4PL) model, even though not used in practice, contains an additional estimable
upper asymptote or item ceiling parameter ζj. The following is the equation of the
4PL model, which allows the derivation of the other models as special cases by
constraining ζj to 1 (3PL), γj to 0 (2PL), and αj to 1 (1PL) respectively:

( ) ( ) ( )( )
( )( )Pj i j j j

j i j

j i j

j j i

θ γ ζ γ
α θ β

α θ β

α β θ

= + −
−

+ −

> − ∞ < <

exp

exp
;

, ,

1

0 ∞ ≤ < ≤, 0 1γ ζj j

(1)

The functional graph for each item, the ICC, is bound between 0 and 1,
sigmoidal in shape, and symmetric at its inflection point located at βj. We thus have
that for sets of items in the 1PL the ICCs all have the same slope and do not inter-
sect, for the 2PL they are allowed to have different slopes and may intersect, for the
3PL their lower asymptotes may also be greater than 0, and for the 4PL their upper
asymptotes may also be less than 1. The most flexible model is thus the 4PL, but
the 3PL is more commonly used due to the large number of items and examinees
required to estimate the 4PL properly and a lack of efficient routines to do so.
BILOG-MG estimates the 1PL, 2PL, and 3PL, whereas MULTILOG estimates the
1PL and 2PL as special cases of the Graded Response Model (Samejima, 1969,
1997b) and the 3PL as a special case of the Multiple Response Model (Thissen &
Steinberg, 1984). Note that MULTILOG requires a recoding of the responses to ‘1’
and ‘2’—in contrast to the more common ‘0’ and ‘1’—because the ‘0’ category is
reserved for missing data. In the new Windows version of these programs, all of
these models are now estimable for an unlimited number of examinees and items;
the numbers are bound only by the memory capacity of the computer on which
they are installed.

The next level of complexity for unidimensional models is to decompose indi-
vidual item parameters using indicator variables or scoring weights on L predictor
variables or so-called attributes, which are often based on cognitive theory. This
can be done for the difficulty parameter βj or for both the difficulty parameter βj

and the discrimination parameter αj; yet, a meaningful application of these models
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requires that the analyst have sufficient relevant background information on the re-
sponse processes, which makes them of interest mainly to substantive cognitive re-
searchers. At any rate, neither BILOG-MG nor MULTILOG estimates these mod-
els. Similarly, the natural extension of all of the models presented so far are
multidimensional IRT models, which include an M-dimensional vector of latent
predictor variables instead of a unidimensional latent predictor variable (e.g.,
Ackerman, 1994; Embretson, 1984) with again a possible decompositions of item
parameters (e.g., Embretson, 1999). Moreover, decomposing the item response
process into subprocesses according to substantive theory is possible, which leads
to componential IRT models (e.g., Hoskens & deBoeck, 1995, 2001; Samejima,
1995, 1997a). However, neither BILOG-MG nor MULTILOG estimate such mod-
els because they are programs for unidimensional IRT models only and do not al-
low for parameter decompositions and refined response process decomposition.

Models for Polytomously Scored Items (MULTILOG)

Many assessment instruments consist solely of polytomously scored items or a
mixture of dichotomously and polytomously scored items and hence require that
models for items with K response categories be available. These categories are typ-
ically scored 1, 2, … , K, yet the score could also be replaced by a more general
scoring function.

MULTILOG estimates three major models, which have a variety of
multicategorymodelsas special cases.Note,however, thatMULTILOGdoesnotes-
timate ICCs for categories that have no observed responses and that users need to
manually code the scoring key to collapse categories because the program does not
automatically check for zero observed frequencies. For tests with mixed item types
or when different models are desired for different polytomously scored items,
MULTILOGisable tocalibrateall itemsandscoreallexamineesonthesamescale.

The first model is suitable for item scores that represent a graded scale and is
aptly called the Graded Response Model (Samejima, 1969). It uses cumulative
probabilities to define the response probability for a given category k as the differ-
ence in cumulative response probabilities of adjacent categories. The threshold lo-
cation parameters βjk, k = 0 , … , K–1 indicate scoring in category k or higher. Sym-
bolically:

( ) ( ) ( )
( )[ ]

P X k P X k P X kj ij i j ij j ij

jk i jk

jk

= = = − = + =

−

+

θ

α θ β

α

* *

exp

exp

1

1 ( )[ ]
( )[ ]
( )[ ]θ β

α θ β

α θ βi jk

jk i jk

jk i jk−
−

−

+ −
+ +

+ +

exp

exp

1 1

1 11

(2)

As special cases of this model, one can obtain, for example, the 1PL and 2PL.
The second major model is suitable for different types of multicategory re-

sponses that do not represent a graded scale but rather alternative choices and is
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aptly called the Multiple Response Model (Thissen & Steinberg, 1984), which is a
further modification of Samejima’s (1972) modification of Bock’s (1972) Nomi-
nal Model. Symbolically, in divide-by-total form (Thissen & Steinberg, 1986):

( ) [ ] [ ]
P X k

h c hd c

c
j ij i

jk i jk k jk i jk

js i

= =
− + −

−
θ

α θ α θ

α θ

* exp exp

exp[ ]js
s

K

=
∑

1

(3)

where the parameter dk denotes the proportion of examinees who do not know an
answer but nevertheless respond in some category, the parameters h and h* are cal-
culated by MULTILOG and are used to obtain other models as special cases of
this, and αjkθi – cjk is simply an alternative parametrization of the typical 2PL ker-
nel α(θ – β). With the h and h* parameters one can obtain the Multiple Choice
Model (h = 1, h* = 1), the Nominal Model (h = 0, h* = 1), and the 3PL for dichoto-
mous data (h = 1, h* ∈ {0,1}) as special cases.

In general, the specification of parameter contrasts in MULTILOG allows one
to develop contrasts that lead to interpretations or parameters that may be particu-
larly meaningful in the context of a particular study or to obtain other well-known
models as special cases. For example, the Nominal Model with centered polyno-
mial contrasts for scores and constant linear contrasts across items for the αj’s is
equivalent to Master’s (1982) Partial Credit Model for ordered item responses.
Similarly, one can obtain Muraki’s (1992) Generalized Partial Credit Model and
Andrich’s (1978) Rating Scale Model as special cases of the Nominal Model and
Muraki’s (1990) rating scale version of the Graded Response Model (see
Mellenbergh, 1995; Thissen & Steinberg, 1986).

The final model in MULTILOG is the Normal Linear Model for continuous re-
sponses, which can be conceived of as a limiting case for an increasing number of
response categories. This model postulates a Gaussian response function with
mean response level µ and standard deviation σ. With Yij denoting the continuous
item variable we have, symbolically:

( ) ( ) ( )
P Y y

Y
j ij ij i j

ij j i j

j

= = ⋅ −
− −−

θ πσ
β θ µ

σ
2

2

0 5
2

2

.
exp[ ] (4)

The models discussed thus far cover a wide range of IRT models, but several
more complex IRT models exist that these programs do not estimate, including
models for preference data such as the hyperbolic cosine model (Andrich, 1995),
unidimensional latent class models (e.g., Junker & Sijtsma, 2001), nonparametric
models such as Mokken’s models of monotone homogeneity and double
monotonicity (Mokken & Lewis, 1982), and the extended forms of some of the
previous models for cognitively diagnostic assessment (see Junker, 1999). For a
more mathematical description of these models, see Junker (1999), Rupp (2002),
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and van der Linden and Hambleton (1997), as well as the citations therein. How-
ever, as stated earlier, no software program can possibly accommodate all models
currently available to the practitioner in a field with myriad models, and
BILOG-MG and MULTILOG are very flexible programs for estimation purposes.
In particular, their ability to accommodate multilevel and multigroup data makes
them so appealing for current-day applications.

Multilevel and Multigroup Data

In some situations multilevel modeling is appropriate, including scenarios where
only a subset of a group of examinees is administered a follow-up assessment
based on their results on a preliminary assessment, or when examinees are sampled
in nested settings that lead to matrix-sampled data. These scenarios are accommo-
dated in BILOG-MG. Moreover, when different groups of examinees are used
such as in equivalent and nonequivalent groups equating and investigations of LOI
such as DIF and IPD, multigroup estimation procedures are needed. Both
BILOG-MG and MULTILOG accommodate data arising from these scenarios.
However, as is always the case, certain limitations exist. For example, IPD and DIF
analyses in BILOG-MG are restricted to the item difficulty parameter and proce-
dures for matrix-sampled data require the administration of at least 15 randomly
parallel forms each with at least one item from each content area assigned in rota-
tion to students under identical conditions. In MULTILOG, any subset of parame-
ters can be constrained similar to estimation procedures in LISREL (Jöreskog &
Sörbom, 1996) but, depending on the model and data structure, large sample sizes
are often required to obtain stable parameter estimates. Nevertheless, the conve-
nience of having BILOG-MG and MULTILOG available in a Windows environ-
ments combined with the variety of models they estimate and the variety of data
structures they accommodate make them appealing programs.

ESTIMATION OF MODEL PARAMETERS IN
BILOG-MG AND MULTILOG

Writing a description of an estimation process is always a bit odd because to under-
stand estimation theory properly a fairly advanced training in mathematical statis-
tics is required; yet, even analysts who lack such a training should become familiar
with the basic ideas. Fortunately, several excellent articles are available that de-
scribe the general estimation process in IRT models. At a more advanced level, I
have found the unifying description of the expectation-maximization (EM) algo-
rithm by Harwell, Baker, and Zwarts (1993) and its extension to Bayesian estima-
tion (Harwell & Baker, 1991) to be most useful because it facilitates an under-
standing of the even more technical and denser articles on said algorithm and the
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Bayesian estimation paradigm (e.g., Bock & Aitkin, 1981; Bock & Lieberman,
1970; Dempster, Laird, & Rubin, 1977; Mislevy, 1984, 1986). At a simpler level,
chapter 3 of the accompanying manual for the CD-ROM reviewed here (du Toit,
2003) provides a relatively accessible overview of the estimation process in
BILOG-MG without going into too many subtle details and derivations. However,
the chapter does not address the estimation procedures in MULTILOG in more de-
tail but rather references the original articles in the literature due to the more com-
plex estimation routines.

This article focuses on the general concepts in the estimation procedures of
both BILOG-MG and MULTILOG, which are applicable, conceptually, to most
modern estimation enterprises. At this point it is worth remarking on what consti-
tutes a sufficiently large sample size for item calibration. This depends of course
first and foremost on the model because different models require different num-
bers of parameters to be estimated per item (e.g., J parameters for a 1PL, 2 × J pa-
rameters for a 2PL, and 3 × J parameters for a 3PL) and also some of these parame-
ters are harder to estimate than others due to a lack of information in the data about
them (e.g., the lower-asymptote parameter in a 3PL). Specifically, the degree of
bias and estimation error for parameter estimates depends on factors such as the
number of parameters whose true values are extreme, the degree of skewness and
kurtosis of the true underlying examinee parameter distribution, the match of the
prior distribution to this underlying distribution, and the variance of the prior dis-
tribution. As might be expected, the influence of these factors decreases as the
number of examinees increases for a fixed number of items. If any general guide-
lines can be given, it appears that for tests with between 15 and 50 items, approxi-
mately 250 examinees are required for the 1PL and 2PL, and approximately 500,
maybe even 1,000, examinees are required for the 3PL and the Graded Response
Model to achieve stable parameter estimates (e.g., Harwell & Janosky, 1991; Reise
& Yu, 1990; Seong, 1990; Stone, 1992; Yen, 1987; see also Drasgow, 1989;
Kirisci, Hsu, & Yu, 2001).

The following description outlines some fundamental estimation steps and
comprises two sections. First, some basic equations that illustrate common con-
cepts in estimation theory, such as marginalization and likelihood, are introduced.
Second, these concepts are used to describe the major estimation process in
BILOG-MG and MULTILOG, which is marginal maximum likelihood (MML) es-
timation within a fully Bayesian framework.

Basic Equations for Estimation

In the following, I will again denote examinees by i = 1 , … , I, items by j = 1 , … , J,
the latent predictor variable by θ, and the response probability for a correct re-
sponse to a given item or item category by P. The following description of parame-
ter estimation is not tied to a single IRT model, but instead is applicable to all basic
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unidimensional models. Consequently, I use the general expression Pj(Xij = xijθ i)
to denote such an IRT model. For example, for the 3PL:

( ) ( ) ( )[ ]
( )[ ]P X xj ij ij i j j

j i j

j i j

= = + −
−

+ −
θ γ γ

α θ β

α θ β
1

1

exp

exp
. (5)

Under the assumption of local independence, the probability of observing a re-
sponse vector xi for a given examinee is:

( ) ( )P P X xi i i j ij ij i
j

J

X x= = =
=

∏θ θ .
1

(6)

This is a conditional probability because the response probability depends on
the latent variable θ. Given that the responses of the examinees are independent of
one another, the conditional probability of observing all response patterns (i.e., the
data), can thus be computed as the double product:

( ) ( )P P X xj ij ij i
j

J

i

I

X x= = =
==

∏∏θ θ
11

. (7)

This probability, if thought of as a function for the unknown parameter vector, is
also known as the likelihood for the data, L(θ  X = x). If one conceives of θ as
a random variable (i.e., of the examinees being randomly drawn from a popula-
tion with a distribution for θ), one can further integrate out θ. The distinction be-
tween conceiving of θ as either a random variable or not is analogous to analysis
of variance models where one distinguishes between random effects and fixed
effects. Indeed, MULTILOG also calibrates item parameters for the fixed effects
θ case using maximum likelihood (ML) estimation, but this case is rarer in prac-
tice.

Under the assumption of θ as a random effect, one thus obtains the uncondi-
tional or marginal probability of observing the data:

( ) ( ) ( )P P X x g dj ij ij i
j

J

i

I

X x= = =










==
∏∫∏ θ θ θ

11 Θ

. (8)

This function is also known as the marginal likelihood, L(X = x). Here, g(θ) de-
notes the probability distribution of θ in the population, which is often assumed to
be standard normal for estimation purposes (e.g., if θ ~ N(0,1) the domain for inte-
gration, Θ, becomes the real numbers).

For practical estimation purposes, the distribution g(θ) needs to be estimated,
just as is the case with any estimation of an integral in numerical analysis, and sev-
eral techniques are available for that purpose. They all have in common that a suit-
able subset of the real numbers is chosen (e.g., the interval from –5 to 5 if θ ~
N(0,1)), along with a number of K evaluation points, which are typically equally
spaced. For each evaluation point, the approximate value of the density function
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needs to be computed, which can be done for a theoretically selected distribution
(e.g., a standard normal distribution) or for an empirically estimated distribution
(i.e., one that is estimated from the data). For a general normal distribution density
weights for evaluation points are available in the literature (Stroud & Secrest,
1966) and can be easily modified to obtain the requisite values for the standard
normal distribution.

If we now denote the kth density weight by A(Tk), we can write equation (8) as:

( ) ( ) ( )~
P P X x T A Tj ij ij k

j

J

k
k

K

i

X x= = =






















===

∏∑
111

I

∏ . (9)

Note that the letter T is used to denote that the unobservable θ value has been re-
placed with the observable (i.e., determined) evaluation point value T. We now
have the basic machinery to describe how the previous equations are used in the
MML parameter estimation procedure implemented in BILOG-MG.

MML Estimation

The parameters of interest in a testing situation are typically both the item and
examinee parameters. The former are always conceived of as fixed whereas the lat-
ter can either be conceived of as random or fixed as stated earlier. If the examinee
parameters are conceived of as random, the interest is in estimating the parameters
of their distribution g(θ) (e.g., the mean and variance of a normal distribution); if
they are conceived of as fixed, the interest is in estimating the I values for the I
examinees who took the test.

Historically, item parameters and examinee parameters were either estimated
jointly in an iterative fashion using a procedure called joint maximum likelihood
(JML), or, for models where a sufficient statistic for θ was available—such as
the 1PL—using a procedure called conditional maximum likelihood (CML).
However, the parameter estimates from JML do not have desirable properties in
most cases (i.e., they are not consistent), and CML is useful only for the limited
class of models that have sufficient statistics for θ that are directly observable
from the data.

Thus, the basic idea in MML is to overcome the iterative dependency of previ-
ous parameter estimates in JML by first integrating out θ (see Equations 8 and 9)
and then to maximize the marginal log-likelihood (Log-LM) to obtain the MML es-
timates of the item parameters using the first- and second-order derivatives. The
item parameter estimates can then be used to obtain estimates of the examinee pa-
rameters if needed. Examinees are commonly grouped by observed response pat-
terns and the observed frequencies of each response pattern are used to reduce the
number of computations, but that step is not reproduced in this exposition to pre-
serve notational clarity.
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Recalling the form of the marginal likelihood function from Equation 8 and its
estimate from Equation 9, the estimated Log-LM using the density weights A(Tk)
looks like this:

( ) ( )log log− ≅ =




















==
∏∑LM P X x T A Tj ij ij k
j

J

k
k

K

11


=

∑ .
i

I

1

(10)

In BILOG-MG and MULTILOG, initial theoretical (i.e., prior) density weights are
chosen to start the estimation routine, which then become adjusted or replaced at
each iteration cycle by empirically estimated (i.e., posterior) weights (Mislevy,
1984). The practical maximization process of Equation 10 is done via a modifica-
tion of a missing-data algorithm, the EM algorithm (Bock & Aitkin, 1981; Bock &
Lieberman, 1970; Dempster et al., 1977; Harwell & Baker, 1991; Harwell, Baker,
& Zwarts, 1988). This algorithm uses the expected number of examinees at each
evaluation point, n jk , and the expected number of correct responses at each evalua-
tion point, rjk , as artificial data and then maximizes the Log-LM at each iteration.

Moreover, the EM algorithm employs Bayes theorem. In general, the theorem
expresses the posterior probability of an event, after observing the data, as a func-
tion of the likelihood for the data and the prior probability of the event, before ob-
serving the data. To implement the EM algorithm, the kernel of Log-LM is ex-
pressed with respect to the posterior probability for θ, which is:

( ) ( ) ( )
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Here, g(θ) represents our prior beliefs about the population distribution of θ. Using
this theorem, the MML estimation process within the EM algorithm comprises
three steps, which are repeated until convergence of the item parameter estimates
is achieved.

First, the posterior probability of θ for each examinee i at each evaluation point
k is computed via

( )
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as an approximation to Equation 11 at evaluation point k. This is accomplished by
using provisional item parameter estimates from the previous iteration to compute
Pj(Xij = xij  Tk) for a chosen model. Second, using these posterior probabilities,
the artificial data for each item j at each evaluation point k are generated using
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Third, the first-order derivatives of the estimated Log-LM function Equation 10 with
respect to the item parameters are set to 0 to determine their maxima (i.e., to deter-
mine the item parameter values) and the information matrix at their estimates using
the Newton-Gauss (i.e., Fisher scoring) algorithm. For that purpose, Equation 10
and its derivatives are rewritten using the artificial data in Equation 13. The entire
process is thenrepeateduntil convergenceofparameterestimateshasbeenachieved.

Instead of just performing these steps, however, BILOG-MG and MULTILOG
allowfora fullyBayesianestimationprocess.Hence,priordistributionscanbespec-
ified for item and examinee distribution parameters as well, which are then incorpo-
rated into the Log-LM and its derivatives. For the 3PL for example, it is reasonable to
specify normal priors for αj, βj, and the logit of γj (e.g., αj ~ N(1,1), βj ~ N(0,3),
logit[γj] ~ N(–1.4,1)) or, alternatively, a joint multivariate normal distribution with
hyperpriors for all three (see e.g., Mislevy, 1986). Both BILOG-MG and
MULTILOG allow the specification of normal priors for item parameters, and
BILOG-MG allows for the estimation of empirically updated priors at each cycle.
The choice of priors does not have a strong influence on the item and examinee pa-
rameter estimates if the sample size is large enough to provide sufficient information
about the parameters from the data, but the parameter estimates tend to drift toward
the modal or mean values of the priors if the sample size is small. In such a case, if a
prior is chosen that does not reflect the true behavior of the item parameter, then the
estimation results become unduly biased and may also lead to seemingly erroneous
results for fit statistics. For this reason, many practitioners go with the default values
provided in both BILOG-MG and MULTILOG because they provide reasonable es-
timates that work sufficiently well over a wide range of applications (see Gifford &
Swaminathan, 1990; Harwell & Janosky, 1991; Seong, 1990).

Table 1 shows several default options for the estimation process in both pro-
grams. Note that a row is included for the acceleration parameter, which Ramsay
(1975) introduced for faster convergence.

Both programs allow for overriding the starting values, for the equating of item
parameters and examinee distribution parameters across groups, and allow all of
these to be done for all items, tests, and groups or for selected subsets. Whereas
BILOG-MG allows for these things to be specified via interactive menus,
MULTILOG requires them to be specified through syntax. Moreover, BILOG-MG
also allows for differential weighting of cases due to allocation sampling of re-
spondents and even allows for the specification of different random number seeds.
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Scoring Examinees

Obtaining examinee parameters (i.e., scoring examinees) presumes that the chosen
model not only provides stable parameter estimates, but also that it fits the data
well as measured by some fit index (e.g., the likelihood-ratio test using the G2 sta-
tistic). The scoring itself can be done via ML estimation in a frequentist framework
or with either expected a posteriori (EAP) or maximum a posteriori (MAP) estima-
tion in a fully Bayesian framework employing prior distributions. All three ap-
proaches consider the item parameter estimates that were obtained by the steps de-
scribed previously as the true values; alternatively, one can of course import known
item values for scoring.

Under ML estimation, the log-likelihood for each examinee or examinee
group is maximized with respect to each θ yielding an ML estimate for θ for
each examinee or examinee set. Under EAP, the means of the posterior distribu-
tions for θ (see Equations 11 and 12) are used as the θ estimates for each
examinee or examinee group whereas in MAP, the modes of the posterior distri-
butions for θ are used. Of course, the posterior distributions have to be empiri-
cally estimated using numerical integration with evaluation points and density
weights as before. Finally, one should note that after all point estimates for θ
have been obtained, their precision needs to be determined as well. This
amounts to either inverting the estimated information matrices at the point esti-
mates (for the ML approach), inverting the estimated posterior information ma-
trices (for the MAP approach), or computing the standard deviation of the poste-
rior distributions directly (for the EAP approach). BILOG-MG and MULTILOG
allow users to choose among these three methods via interactive menus and syn-
tax commands respectively with EAP being the default.
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TABLE 1
Default Values for Marginal Maximum Likelihood

Estimation Aspect Default BILOG-MG Default MULTILOG

Maximum number of iterations for entire
EM cycle

10 25

Maximum number of iterations for M-step
in EM cycle

2 4 (times number of
parameters)

Convergence threshold for M-step in EM
cycle

.01 .001

Convergence threshold for entire EM cycle .01 .0001
Acceleration parameter 1 (single group) 0

0.5 (multiple group)
Number of evaluation points for g(θ) 10 (1 group or < 50 items) 19 in [–5, 5]

20 (> 1 group or > 50 items)

Note. EM = expectation-maximization.
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Similar ideas about estimation such as MML estimation in a Bayesian frame-
work prevail for estimation of models for polytomously scored items; hence, the
description presented here should prove useful for those interested in delving into
the literature. The remainder of this article discusses the input procedures, output
files, and interface of BILOG-MG and MULTILOG.

ANALYZING DATA WITH BILOG-MG AND MULTILOG

No software program frees its users from needing basic knowledge about the rou-
tines and models it uses; therefore, users of BILOG-MG and MULTILOG should
familiarize themselves with the models they are estimating. The following pro-
gram descriptions assume that users have some basic knowledge of IRT models
(e.g., that users know a 3PL model has three parameters and know how they are in-
terpreted), but that they are not familiar with FORTRAN, the code on which
BILOG-MG and MULTILOG are based.

Input

Visually, the first thing to note about both programs is that they are built around
point-and-click and click-and-drag interfaces, which significantly facilitates their
use in a Windows environment for users who are not entirely comfortable with com-
mand syntax. Users will immediately recognize the typical Windows pull-down
menus and icons with their basic choices for file management, editing, viewing,
help, and numerous other choices once syntax command files are opened or created.
To prepare a calibration or scoring process, either a new command file needs to be
created or an existing one needs to be loaded. The latter can be easily achieved, but
bothprogramsdonotautomaticallydirect theuser to theappropriatedirectoryon the
hard drive. Once the files are opened, however, new pull-down menus are activated
and users can start to build a command file for the data. For users preferring com-
mand line syntax, both programs allow the creation of such files without going
through any interactive Windows menus. In MULTILOG, once a complete syntax
file isopened, theuserhas twooptions: run the fileor lookatgeneratedoutput.Multi-
ple other options for building a basic command file through a sequence of interactive
Windows are activated only when a new one is created. In BILOG-MG, all program
options for file management, data setup, estimation, and other features are directly
accessible through menus, which is much more user-friendly than MULTILOG,
which contains interactive menus only for certain subtasks.

In both BILOG-MG and MULTILOG, users can interactively select the assess-
ment characteristics such as the number of items, tests, examinee groups, or dis-
tinct response patterns. In MULTILOG, a dialogue box opens that allows users to
select radio buttons for the model they wants to use, and they can specify either the
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same model for all items or different models for different items via point-and-click
selection. This process may be a bit tedious for very long tests when multiple
model combinations for different items need to be tried out, but the program is gen-
erally an extremely user-friendly setup. Being able to go back and forth among the
windows in this program during the process of creating the command file to
change previous choices is helpful. Once all is done, MULTILOG automatically
generates the syntax code for running. In BILOG-MG, similar options facilitate
the creation of command syntax through the setup option; the major difference is
that options are presented in Windows with separate tabs rather than as a sequence
of separate windows.

Despite the fact that both programs facilitate the creation of basic command file
syntax through interactive menus considerably, users must be aware that the goal is
still to assemble an internally logical syntax file. Particularly in MULTILOG, this
requires that FORTRAN code needs to be input at some points. For example, if us-
ers would like to input item response vectors for MML item calibration, they need
to specify the appropriate data format, which is a rather cryptic code such as (2X,
2A1, T1, 1X, 2A1). Because the code has to match the data structure exactly, this
process requires a bit of practice if the data are stored in a separate file and are not
an integral part of the command syntax. Even though I can understand the structure
of these codes with several examples, I have not found the MULTILOG manual to
be very clear and helpful in this regard. In particular, the examples in MULTILOG
highlight how the data file layout changes for different applications, so for new us-
ers who prefer a didactic method, the process of learning through multiple exam-
ples requires some patience.

Most importantly, the interactive windows-driven menu in MULTILOG only
assembles a basic command file. If additional specifications such as prior distri-
butions for item parameters or specifying parameter contrasts to obtain alterna-
tive models are desired, they have to be manually inserted into the basic com-
mand file after its completion. For guidance with this task, the layout of chapter
5 of the manual is rather confusing because even though it describes each op-
tional command in an ordered sequence and contains cross-references, the lack
of indentations and larger syntax segments that show placements of sequences of
command lines made assembling a complete syntax file difficult. Certainly, ex-
amples are provided from which one can pick and choose syntax commands, but
if one is unfamiliar with the programming code, familiarizing oneself with the
program syntax takes time. In BILOG-MG, however, the interactive creation of
syntax command is much more complete and even more advanced choices can
be made via point-and-click environments.

Both BILOG-MG and MULTILOG allow the user to influence the calibration
and scoring process. In MULTILOG, for example, the user may treat examinee pa-
rameters as fixed or random, a choice selected through an interactive menu, or
specify prior distributions, number of iteration cycles for the EM algorithm, and
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starting values via command syntax. In BILOG-MG, similar choices can be made
directly through the interactive menus, which also include differential weighting
of cases as well as test- and group-specific calibration and scoring specifications.
The calibration and scoring took only a few seconds for all of the data sets that
were included in the programs on a Pentium II 400 MHz processor with 128 MB.
Even if a calibration were to take a few minutes for a large data file, this would
hardly pose problems for a typical user of these programs who is not doing exten-
sive simulation work.

Output

Output in BILOG-MG and MULTILOG can be inspected in two ways. Both
programs provide extensive text output in Windows, which is both helpful for
experienced users and a hinderance for new users for whom digging through
such output might be cumbersome and confusing. In this regard, I found the
bookmark function in BILOG-MG to be most helpful because it allowed me to
quickly mark important output segments and jump among them, although I also
got used to the output structure quickly. Moreover, BILOG-MG separates the
Windows-accessible output into three separate files with respective windows
corresponding to general calibration details, item parameter estimation details,
and examinee parameter estimation details, which is helpful. Standard output in
both programs includes observed and estimated response frequencies, classical
item statistics, estimated item parameters, posterior item and test information
functions, goodness-of-fit information, and scale scores for participants with as-
sociated standard errors. In addition, BILOG-MG reports things such as detailed
information on estimation cycles, IPD and DIF statistics, assumed prior distribu-
tions of item and examinee parameters, posterior distributions for different
groups, correlations among subtest scores, and rescaling information, whereas
MULTILOG reports things such as the specified contrast coefficients and their
associated standard errors. Both programs had warning statements in their out-
put that certain statistics are not valid if samples sizes (e.g., overall examinee
sample size or number of responses for a given category) are small.

Apart from the textual output, both programs come with a new graphics mod-
ule, which is an interface for displaying IRT graphics in a professional manner.
The module displays ICCs (both for individual items and in a multiple-item ma-
trix), item information curves, and test information curves with standard error
curves, as well as histograms of the estimated latent distributions. All graphic dis-
plays can be interactively manipulated and easily exported into other programs
such as Microsoft Word™ or Microsoft PowerPoint™ for presentation purposes.
Because this interface is compatible with both BILOG-MG and MULTILOG, it is
even more versatile for someone who frequently relies on both programs; I would
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consider the new graphics interface to be one of the most impressive and useful
features of these programs for practitioners.

Help

The information in the CD-ROM manual is a rearranged reproduction of the online
help information from both programs and as such is extremely comprehensive,
which again can be both a help and a hindrance. The manual is well structured, but
would benefit from more clearly formatted tables that collect default values and
options, both of which are hidden among myriad other pieces of information in
both programs. I have also found that the indexing function in BILOG-MG more
frequently provided me with the exact answers to my questions and had categories
divided into more useful subcategories. For example, finding detailed information
about the type of output provided in BILOG was easy, but it was not easily accessi-
ble in MULTILOG. Nevertheless, both programs provide examples, explanations,
and screen shots that help users to familiarize themselves with their functionalities.
In addition, I have received prompt, appropriate, and courteous service from Sci-
entific Software International when I had questions regarding workings of the soft-
ware or technical difficulties.

SUMMARY

At the beginning of the 21st century, IRT models have definitely become the models
of choice for many psychometric data analysts and BILOG-MG and MULTILOG
continue to introduce IRT models to a wider audience. The improved capabilities of
both programs, the new Windows interface for MULTILOG, and the graphics inter-
face for both programs encourage users to explore the advantages IRT modeling has
to offer. For users who prefer point-and-click Windows interfaces, BILOG-MG
shouldbeextremelyeasy tomaneuver forbothbasicandadvancedanalyseswhereas
MULTILOG still requires the user to learn some syntax commands for more ad-
vanced analyses. The output both programs provide is comprehensive and can now
be professionally presented due to the new graphics interface.

Both programs flexibly estimate a wide variety of IRT models, but of course not
all available models. Most notably, multidimensional IRT models, componential
IRT models, and models for cognitively diagnostic assessment are not estimable
with these programs. On the other hand, both programs can handle data from mul-
tiple groups and perform LOI analyses; BILOG-MG can even handle matrix-sam-
pled multilevel data. Despite these exciting possibilities, these programs still re-
quire responsible users who have a solid understanding of IRT models and that is,
as always, good knowledge to have.
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