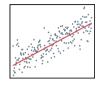


Distributional Regression Forests for Probabilistic Modeling and Forecasting

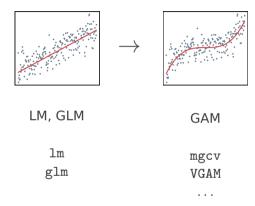
Lisa Schlosser, Torsten Hothorn, Heidi Seibold, Achim Zeileis

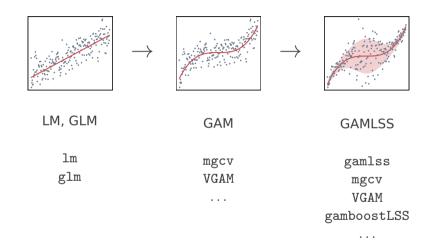
https://eeecon.uibk.ac.at/~zeileis/



LM, GLM

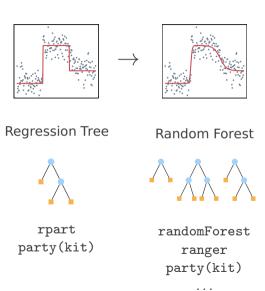
lm glm

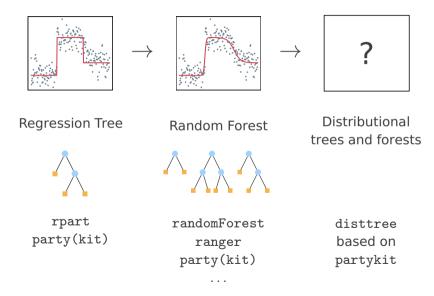




Regression Tree

rpart
party(kit)





Goals

Distributional:

 Specify the complete probability distribution (including location, scale, and shape).

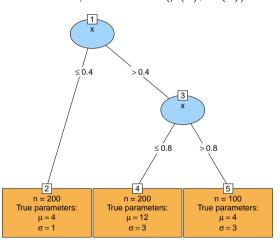
Tree:

- Automatic detection of steps and abrupt changes.
- Capture non-linear and non-additive effects and interactions.

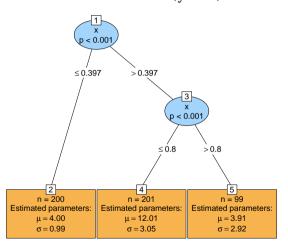
Forest:

- Smoother effects.
- Stabilization and regularization of the model.

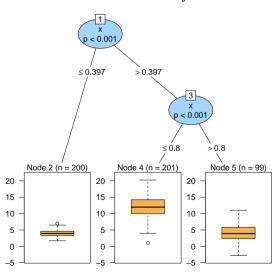
DGP:
$$Y \mid X = x \sim \mathcal{N}(\mu(x), \sigma^2(x))$$



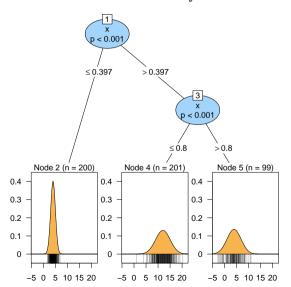
Model: disttree(y ~ x)

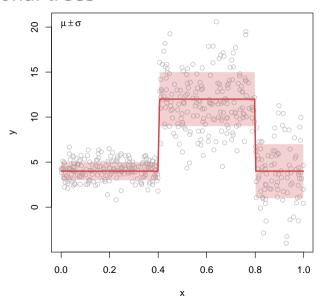


Model: disttree(y ~ x)



Model: disttree(y ~ x)





Estimation: Global likelihood

- Specify a parametric distribution family $F(\cdot; \theta)$ with parameter vector $\theta \in \Theta$ capturing location, scale, shape.
- Cumulative distribution function and log-likelihood:

$$F(y; \theta) = \mathbb{P}_{\theta}(Y \leq y)$$

 $\ell(\theta; y) = \log(f(y; \theta))$

• Estimate $\hat{\theta}$ via maximum likelihood based on a learning sample y_1, \dots, y_n :

$$\hat{\theta} = \max_{\theta \in \Theta} \sum_{i=1}^{n} \ell(\theta; y_i)$$

Estimation: Adaptive local likelihood

Idea: Covariates captured through adaptive weights.

$$\hat{\theta}(\mathbf{x}) = \max_{\theta \in \Theta} \sum_{i=1}^{n} w_i(\mathbf{x}) \cdot \ell(\theta; y_i).$$

Question: How to choose weighting function $w_i(\mathbf{x})$?

Possible answers: Based on learning sample y_1, \ldots, y_n and (possibly new) observation \mathbf{x} .

- *Tree:* $w_i(\mathbf{x}) \in \{0, 1\}$ indicates whether \mathbf{x} and y_i are classified into the same subgroup.
- Forest: $w_i(\mathbf{x}) \in [0,1]$ averages the weights for \mathbf{x} and y_i across trees.

Estimation: Distributional trees and forests

Tree:

- $oldsymbol{0}$ Estimate $\hat{\theta}$ via maximum likelihood (without covariates).
- **2** Test for associations or instabilities of the scores $\frac{\partial \ell}{\partial \theta}(\hat{\theta}; y_i)$ and each partitioning variable x_i .
- Split the sample along the partitioning variable with the strongest association or instability. Choose breakpoint with highest improvement in log-likelihood.
- **Q** Repeat steps 1–3 recursively until some stopping criterion is met, yielding B subgroups \mathcal{B}_b with $b=1,\ldots,B$.

Forest: Ensemble of *T* trees.

- Bootstrap or subsamples.
- Random input variable sampling.

Estimation: Adaptive local likelihood

Estimator:

$$\hat{\theta}(\mathbf{x}) = \max_{\theta \in \Theta} \sum_{i=1}^{n} w_i(\mathbf{x}) \cdot \ell(\theta; y_i)$$

Weights:

Model specification

Covariates: Automatically through adaptive forest weights.

Response: Distributional specification needed.

- Continuous responses: Gaussian, ...
- Limited responses: Censored Gaussian, . . .
- Survival times: Exponential, Weibull, . . .
- Count: Poisson, negative binomial, . . .
- Circular: Von Mises, wrapped distributions, . . .

Guidance: Literature, theory, experience, ...

Model specification

Illustration: Hourly mean wind direction at Innsbruck Airport (at wind speeds higher than $1 ms^{-1}$).

Distribution: Von Mises with location μ and concentration κ .

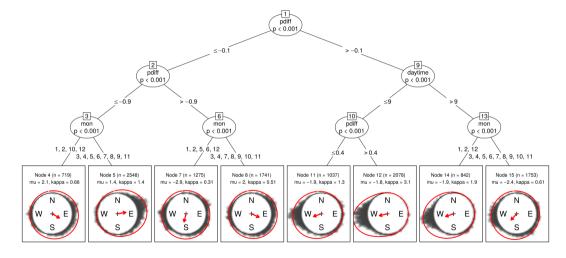
$$f(y; \mu, \kappa) = \frac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(y-\mu)},$$

where $I_0(\kappa)$ is the modified Bessel function of the first kind and order 0.

Regressors: Pressure difference between Innsbruck and Kufstein (pdiff, numeric), months (mon, factor), hour of the day (daytime, numeric).

Model: Tree up to depth 3, forest is work in progress.

Model specification



Transformation models

Alternative: When no obvious classic distribution assumption is available.

Advantages:

- Does not require specification of distribution family.
- More flexible framework.

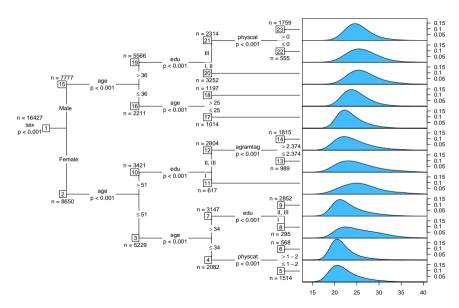
Distribution function:

$$F(y; \theta) = \Phi(\mathbf{a}_{Bs,d}(y)^{\top}\theta)$$

- $\mathbf{a}_{Bs,d}(y)^{\top}\theta$ is a smooth, monotone Bernstein polynomial of degree d.
- d = 1 corresponds to $\mathcal{N}(\mu, \sigma^2)$.
- d = 5 is surprisingly flexible.

Example: Body Mass Index explained by lifestyle factors (Switzerland).

Transformation models



Software

Package: disttree available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/

Main functions:

distfit Distributional fit (ML, gamlss.family/custom list).

No covariates.

disttree Distributional tree (ctree/mob + distfit).

Covariates as partitioning variables.

distforest Distributional forest (disttree ensemble).

Covariates as partitioning variables.

References

Schlosser L, Hothorn T, Stauffer R, Zeileis A (2018). "Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain." arXiv 1804.02921, arXiv.org E-Print Archive. http://arxiv.org/abs/1804.02921

Hothorn T, Zeileis A (2017). "Transformation Forests." arXiv 1701.02110, arXiv.org E-Print Archive. http://arxiv.org/abs/1701.02110

Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." *Journal of Machine Learning Research*, **16**, 3905–3909.

http://www.jmlr.org/papers/v16/hothorn15a.html

Hothorn T, Hornik K, Zeileis A (2006). "Unbiased Recursive Partitioning: A Conditional Inference Framework." *Journal of Computational and Graphical Statistics*, **15**(3), 651–674. doi:10.1198/106186006X133933

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." *Journal of Computational and Graphical Statistics*, **17**(2), 492–514. doi:10.1198/106186008X319331

Stasinopoulos DM, Rigby RA (2007). "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R." *Journal of Statistical Software*, **23**(7), 1–46. doi:10.18637/jss.v023.i07