\square universität innsbruck

Distributional Regression Forests for Probabilistic Modeling and Forecasting

Lisa Schlosser, Torsten Hothorn, Heidi Seibold, Achim Zeileis https://eeecon.uibk.ac.at/~zeileis/

Motivation

Motivation

LM, GLM

1m
glm

Motivation

LM, GLM

1m
glm

VGAM

Motivation

Motivation

Regression Tree

Motivation

Regression Tree

rpart
party(kit)

Random Forest

randomForest ranger party (kit)

Motivation

Regression Tree

rpart
party(kit)

Random Forest

$$
\begin{gathered}
\text { randomForest } \\
\text { ranger } \\
\text { party (kit) }
\end{gathered}
$$

Distributional trees and forests
disttree based on partykit

Goals

Distributional:

- Specify the complete probability distribution (including location, scale, and shape).

Tree:

- Automatic detection of steps and abrupt changes.
- Capture non-linear and non-additive effects and interactions.

Forest:

- Smoother effects.
- Stabilization and regularization of the model.

Distributional trees

DGP: $Y \mid X=x \sim \mathcal{N}\left(\mu(x), \sigma^{2}(x)\right)$

Distributional trees

Model: disttree (y ~ x)

Distributional trees

Model: disttree (y ~ x)

Distributional trees

Model: disttree (y ~ x)

Distributional trees

Estimation: Global likelihood

- Specify a parametric distribution family $F(\cdot ; \theta)$ with parameter vector $\theta \in \Theta$ capturing location, scale, shape.
- Cumulative distribution function and log-likelihood:

$$
\begin{aligned}
F(y ; \theta) & =\mathbb{P}_{\theta}(Y \leq y) \\
\ell(\theta ; y) & =\log (f(y ; \theta))
\end{aligned}
$$

- Estimate $\hat{\theta}$ via maximum likelihood based on a learning sample y_{1}, \ldots, y_{n} :

$$
\hat{\theta}=\max _{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)
$$

Estimation: Adaptive local likelihood

Idea: Covariates captured through adaptive weights.

$$
\hat{\theta}(\mathbf{x})=\max _{\theta \in \Theta} \sum_{i=1}^{n} w_{i}(\mathbf{x}) \cdot \ell\left(\theta ; y_{i}\right)
$$

Question: How to choose weighting function $w_{i}(\mathbf{x})$?
Possible answers: Based on learning sample y_{1}, \ldots, y_{n} and (possibly new) observation \mathbf{x}.

- Tree: $w_{i}(\mathbf{x}) \in\{0,1\}$ indicates whether \mathbf{x} and y_{i} are classified into the same subgroup.
- Forest: $w_{i}(\mathbf{x}) \in[0,1]$ averages the weights for \mathbf{x} and y_{i} across trees.

Estimation: Distributional trees and forests

Tree:

(1) Estimate $\hat{\theta}$ via maximum likelihood (without covariates).
(2) Test for associations or instabilities of the scores $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each partitioning variable x_{i}.
(3) Split the sample along the partitioning variable with the strongest association or instability. Choose breakpoint with highest improvement in log-likelihood.
(4) Repeat steps 1-3 recursively until some stopping criterion is met, yielding B subgroups \mathcal{B}_{b} with $b=1, \ldots, B$.

Forest: Ensemble of T trees.

- Bootstrap or subsamples.
- Random input variable sampling.

Estimation: Adaptive local likelihood

Estimator:

$$
\hat{\theta}(\mathbf{x})=\max _{\theta \in \Theta} \sum_{i=1}^{n} w_{i}(\mathbf{x}) \cdot \ell\left(\theta ; y_{i}\right)
$$

Weights:

$$
\begin{aligned}
w_{i}^{\text {global }}(\mathbf{x}) & =1 \\
w_{i}^{\text {tree }}(\mathbf{x}) & =\sum_{b=1}^{B} I\left(\left(\mathbf{x}_{i} \in \mathcal{B}_{b}\right) \wedge\left(\mathbf{x} \in \mathcal{B}_{b}\right)\right) \\
w_{i}^{\text {forest }}(\mathbf{x}) & =\frac{1}{T} \sum_{t=1}^{T} \sum_{b=1}^{B^{t}} \frac{I\left(\left(\mathbf{x}_{i} \in \mathcal{B}_{b}^{t}\right) \wedge\left(\mathbf{x} \in \mathcal{B}_{b}^{t}\right)\right)}{\left|\mathcal{B}_{b}^{t}\right|}
\end{aligned}
$$

Model specification

Covariates: Automatically through adaptive forest weights.
Response: Distributional specification needed.

- Continuous responses: Gaussian, ...
- Limited responses: Censored Gaussian, ...
- Survival times: Exponential, Weibull, ...
- Count: Poisson, negative binomial, ...
- Circular: Von Mises, wrapped distributions, ...

Guidance: Literature, theory, experience, ...

Model specification

Illustration: Hourly mean wind direction at Innsbruck Airport (at wind speeds higher than $1 \mathrm{~ms}^{-1}$).

Distribution: Von Mises with location μ and concentration κ.

$$
f(y ; \mu, \kappa)=\frac{1}{2 \pi I_{0}(\kappa)} e^{\kappa \cos (y-\mu)}
$$

where $I_{0}(\kappa)$ is the modified Bessel function of the first kind and order 0 .
Regressors: Pressure difference between Innsbruck and Kufstein (pdiff, numeric), months (mon, factor), hour of the day (daytime, numeric).

Model: Tree up to depth 3, forest is work in progress.

Model specification

Transformation models

Alternative: When no obvious classic distribution assumption is available.

Advantages:

- Does not require specification of distribution family.
- More flexible framework.

Distribution function:

$$
F(y ; \theta)=\Phi\left(\mathbf{a}_{B s, d}(y)^{\top} \theta\right)
$$

- $\mathbf{a}_{B s, d}(y)^{\top} \theta$ is a smooth, monotone Bernstein polynomial of degree d.
- $d=1$ corresponds to $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- $d=5$ is surprisingly flexible.

Example: Body Mass Index explained by lifestyle factors (Switzerland).

Transformation models

Software

Package: disttree available on R-Forge at
https://R-Forge.R-project.org/projects/partykit/

Main functions:

\(\left.\begin{array}{ll}distfit \& Distributional fit (ML, gamlss.family/custom list).

\& No covariates.\end{array}\right\}\)| Distributional tree (ctree/mob + distfit). |
| :--- |
| disttree |
| Covariates as partitioning variables. |
| distforest |

References

Schlosser L, Hothorn T, Stauffer R, Zeileis A (2018). "Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain." arXiv 1804.02921, arXiv.org E-Print Archive. http://arxiv.org/abs/1804.02921

Hothorn T, Zeileis A (2017). "Transformation Forests." arXiv 1701.02110, arXiv.org E-Print Archive. http://arxiv.org/abs/1701. 02110

Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." Journal of Machine Learning Research, 16, 3905-3909.
http://www.jmlr.org/papers/v16/hothorn15a.html
Hothorn T, Hornik K, Zeileis A (2006). "Unbiased Recursive Partitioning: A Conditional Inference Framework." Journal of Computational and Graphical Statistics, 15(3), 651-674. doi:10.1198/106186006X133933

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." Journal of Computational and Graphical Statistics, 17(2), 492-514. doi:10.1198/106186008x319331

Stasinopoulos DM, Rigby RA (2007). "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R." Journal of Statistical Software, 23(7), 1-46. doi:10.18637/jss.v023.i07

