



# Distributional Regression Forests for Probabilistic Modeling and Forecasting

Lisa Schlosser, Torsten Hothorn, Heidi Seibold, Achim Zeileis

https://eeecon.uibk.ac.at/~zeileis/



LM, GLM

lm glm







# Regression Tree



rpart
party(kit)





### Goals

#### **Distributional:**

 Specify the complete probability distribution (including location, scale, and shape).

#### Tree:

- Automatic detection of steps and abrupt changes.
- Capture non-linear and non-additive effects and interactions.

#### **Forest:**

- Smoother effects.
- Stabilization and regularization of the model.

DGP: 
$$Y \mid X = x \sim \mathcal{N}(\mu(x), \sigma^2(x))$$



Model: disttree(y ~ x)



Model: disttree(y ~ x)



Model: disttree(y ~ x)





# Estimation: Global likelihood

- Specify a parametric distribution family  $F(\cdot; \theta)$  with parameter vector  $\theta \in \Theta$  capturing location, scale, shape.
- Cumulative distribution function and log-likelihood:

$$F(y; \theta) = \mathbb{P}_{\theta}(Y \leq y)$$
  
 $\ell(\theta; y) = \log(f(y; \theta))$ 

• Estimate  $\hat{\theta}$  via maximum likelihood based on a learning sample  $y_1, \dots, y_n$ :

$$\hat{\theta} = \max_{\theta \in \Theta} \sum_{i=1}^{n} \ell(\theta; y_i)$$

# Estimation: Adaptive local likelihood

**Idea:** Covariates captured through adaptive weights.

$$\hat{\theta}(\mathbf{x}) = \max_{\theta \in \Theta} \sum_{i=1}^{n} w_i(\mathbf{x}) \cdot \ell(\theta; y_i).$$

**Question:** How to choose weighting function  $w_i(\mathbf{x})$ ?

**Possible answers:** Based on learning sample  $y_1, \ldots, y_n$  and (possibly new) observation  $\mathbf{x}$ .

- *Tree:*  $w_i(\mathbf{x}) \in \{0, 1\}$  indicates whether  $\mathbf{x}$  and  $y_i$  are classified into the same subgroup.
- Forest:  $w_i(\mathbf{x}) \in [0,1]$  averages the weights for  $\mathbf{x}$  and  $y_i$  across trees.

### Estimation: Distributional trees and forests

#### Tree:

- $oldsymbol{0}$  Estimate  $\hat{\theta}$  via maximum likelihood (without covariates).
- **2** Test for associations or instabilities of the scores  $\frac{\partial \ell}{\partial \theta}(\hat{\theta}; y_i)$  and each partitioning variable  $x_i$ .
- Split the sample along the partitioning variable with the strongest association or instability. Choose breakpoint with highest improvement in log-likelihood.
- **Q** Repeat steps 1–3 recursively until some stopping criterion is met, yielding B subgroups  $\mathcal{B}_b$  with  $b=1,\ldots,B$ .

#### **Forest:** Ensemble of *T* trees.

- Bootstrap or subsamples.
- Random input variable sampling.

# Estimation: Adaptive local likelihood

#### **Estimator:**

$$\hat{\theta}(\mathbf{x}) = \max_{\theta \in \Theta} \sum_{i=1}^{n} w_i(\mathbf{x}) \cdot \ell(\theta; y_i)$$

### Weights:

# Model specification

**Covariates:** Automatically through adaptive forest weights.

**Response:** Distributional specification needed.

- Continuous responses: Gaussian, ...
- Limited responses: Censored Gaussian, . . .
- Survival times: Exponential, Weibull, . . .
- Count: Poisson, negative binomial, . . .
- Circular: Von Mises, wrapped distributions, . . .

**Guidance:** Literature, theory, experience, ...

# Model specification

**Illustration:** Hourly mean wind direction at Innsbruck Airport (at wind speeds higher than  $1 ms^{-1}$ ).

**Distribution:** Von Mises with location  $\mu$  and concentration  $\kappa$ .

$$f(y; \mu, \kappa) = \frac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(y-\mu)},$$

where  $I_0(\kappa)$  is the modified Bessel function of the first kind and order 0.

**Regressors:** Pressure difference between Innsbruck and Kufstein (pdiff, numeric), months (mon, factor), hour of the day (daytime, numeric).

**Model:** Tree up to depth 3, forest is work in progress.

# Model specification



### Transformation models

**Alternative:** When no obvious classic distribution assumption is available.

#### **Advantages:**

- Does not require specification of distribution family.
- More flexible framework.

#### **Distribution function:**

$$F(y; \theta) = \Phi(\mathbf{a}_{Bs,d}(y)^{\top}\theta)$$

- $\mathbf{a}_{Bs,d}(y)^{\top}\theta$  is a smooth, monotone Bernstein polynomial of degree d.
- d = 1 corresponds to  $\mathcal{N}(\mu, \sigma^2)$ .
- d = 5 is surprisingly flexible.

**Example:** Body Mass Index explained by lifestyle factors (Switzerland).

# Transformation models



### Software

Package: disttree available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/

#### Main functions:

distfit Distributional fit (ML, gamlss.family/custom list).

No covariates.

disttree Distributional tree (ctree/mob + distfit).

Covariates as partitioning variables.

distforest Distributional forest (disttree ensemble).

Covariates as partitioning variables.

### References

Schlosser L, Hothorn T, Stauffer R, Zeileis A (2018). "Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain." arXiv 1804.02921, arXiv.org E-Print Archive. http://arxiv.org/abs/1804.02921

Hothorn T, Zeileis A (2017). "Transformation Forests." arXiv 1701.02110, arXiv.org E-Print Archive. http://arxiv.org/abs/1701.02110

Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." *Journal of Machine Learning Research*, **16**, 3905–3909.

http://www.jmlr.org/papers/v16/hothorn15a.html

Hothorn T, Hornik K, Zeileis A (2006). "Unbiased Recursive Partitioning: A Conditional Inference Framework." *Journal of Computational and Graphical Statistics*, **15**(3), 651–674. doi:10.1198/106186006X133933

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." *Journal of Computational and Graphical Statistics*, **17**(2), 492–514. doi:10.1198/106186008X319331

Stasinopoulos DM, Rigby RA (2007). "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R." *Journal of Statistical Software*, **23**(7), 1–46. doi:10.18637/jss.v023.i07