

Count Data Regression with Excess Zeros: A Flexible Framework Using the GLM Toolbox

Christian Kleiber, Achim Zeileis

http://eeecon.uibk.ac.at/~zeileis/

Count data regression with excess zeros

In practice: The basic Poisson regression model is often not flexible enough to capture count data observed in applications.

- *Overdispersion:* Variance is higher than the mean. Often addressed by adopting a negative binomial (NB) model.
- *Excess zeros:* (Far) more zeros observed than expected from Poisson (or NB) model.

Here: Focus on excess zeros. Poisson will be employed for simplicity but most ideas work analogously for NB.

Strategies:

- Zero-inflation model: Finite mixture model of a Poisson regression and a point mass at zero. Zeros can come from either component.
- *Hurdle model:* Two part model with a binary hurdle part and a zero-truncated count part. Only a single source of zeros and hence simpler to fit and interpret.

Hurdle count data models

Idea: Account for excess (or lack of) zeros by two-part model.

- Is y equal to zero or positive? "Is the hurdle crossed?"
- If y > 0, how large is y?

Formally:

- Zero hurdle: $f_{zero}(y; z, \gamma)$. Binary part given by count distribution right-censored at y = 1 (or simply Bernoulli variable).
- Count part: $f_{count}(y; x, \beta)$. Count part given by count distribution left-truncated at y = 1.

Combined: Probability density function for hurdle model,

$$f_{\text{hurdle}}(y; x, z, \beta, \gamma) = \begin{cases} f_{\text{zero}}(0; z, \gamma), & y = 0, \\ \{1 - f_{\text{zero}}(0; z, \gamma)\} \cdot f_{\text{count}}(y; x, \beta) / \{1 - f_{\text{count}}(0; x, \beta)\}, & y > 0. \end{cases}$$

Hurdle models as two GLMs

Estimation: Facilitated by properties that are not as well known as they deserve to be.

- Both parts of the hurdle model can be fitted separately.
- Each of the two parts is a GLM (or a straightforward extension thereof in case of NB).

Illustration: Poisson hurdle model.

Zero hurdle part: From Poisson with $log(\lambda) = z^{\top}\gamma$.

$$\begin{aligned} \pi &= 1 - f_{zero}(0; z, \gamma) \\ &= 1 - \exp(-\lambda) \\ &= 1 - \exp(-\exp(z^{\top}\gamma)) \\ \log(-\log(1-\pi)) &= z^{\top}\gamma \end{aligned}$$

Thus: Binary GLM with complementary log-log link.

Hurdle models as two GLMs

Zero-truncated count part: From Poisson with $\log(\lambda) = x^{\top}\beta$.

$$\frac{f_{\text{count}}(y; x, \beta)}{1 - f_{\text{count}}(0; x, \beta)} = \frac{\lambda^{y} \exp(-\lambda)}{y! \{1 - \exp(-\lambda)\}} \\ = \exp\{y \log \lambda - \lambda - \log(1 - \exp(-\lambda)) - \log y!\}$$

Thus: Exponential family corresponding to a GLM.

However: The inverse link function is given by

$$E(y|y > 0) = \frac{\lambda}{1 - \exp(-\lambda)}$$
$$= \frac{\exp(x^{\top}\beta)}{1 - \exp(-\exp(x^{\top}\beta))}$$

... and the link function has no closed form.

Hurdle models as two GLMs

Advantages:

- Theoretical properties of GLMs are inherited.
- Implementation can be carried out by standard GLM software with suitable families.
- Methods for GLMs and their extensions can be leveraged for hurdle models.

Implementation:

- A "family" object ztpoisson() in package countreg.
- Link function is computed numerically.

Illustration: Australian doctor visits

Description: Cross-section data with 5,190 observations originating from the 1977–1978 Australian Health Survey.

Source: Cameron & Trivedi (1986, Journal of Applied Econometrics).

Variables:

. . .

- visits Number of doctor visits in past 2 weeks.
- gender Factor indicating gender.
- health General health questionnaire score using Goldberg's method (GHQ-12).
- income Annual income (in 10,000 dollars).
- age Age (in 100 years).

Illustration: Australian doctor visits

Illustration: Poisson hurdle model

Estimation: Dedicated hurdle() fitting function.

```
R> library("countreg")
R> dv0 <- hurdle(visits ~ gender + health + income + poly(age, 2),
    data = DoctorVisits, dist = "poisson", zero.dist = "poisson")
+
R> summary(dv0)
Call:
hurdle(formula = visits ~ gender + health + income + poly(age, 2), data
   dist = "poisson", zero.dist = "poisson")
Pearson residuals:
   Min 1Q Median 3Q Max
-1.2743 -0.4528 -0.3638 -0.3148 14.7294
Count model coefficients (truncated poisson with log link):
            Estimate Std. Error z value Pr(|z|)
(Intercept) -0.03126 0.11716 -0.267 0.78960
genderfemale -0.13488 0.08913 -1.513 0.13022
health 0.07588 0.01208 6.282 3.33e-10 ***
income -0.45814 0.14332 -3.197 0.00139 **
poly(age, 2)1 1.98614 3.24091 0.613 0.53999
poly(age, 2)2 -8.16804 2.95390 -2.765 0.00569 **
```

GLM

Zero hurdle mo	odel coeff	ficients (ce	ensored p	poisson wi	th log	link):	
	Estimate	Std. Error	z value	Pr(z)			
(Intercept)	-1.88034	0.08577	-21.924	< 2e-16	***		
genderfemale	0.26538	0.06884	3.855	0.000116	***		
health	0.14555	0.01104	13.179	< 2e-16	***		
income	-0.02763	0.10057	-0.275	0.783521			
poly(age, 2)1	21.05519	2.34957	8.961	< 2e-16	***		
poly(age, 2)2	3.29889	2.33186	1.415	0.157155			
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							

Number of iterations in BFGS optimization: 37 Log-likelihood: -3537 on 12 Df

Illustration: Two GLMs

Estimation: Standard glm() function with new ztpoisson family.

Results: Essentially identical parameter estimates.

	hurdle-zero	glm-cloglog	hurdle-count	glm-ztpoisson
(Intercept)	-1.8803	-1.8804	-0.0313	-0.0313
genderfemale	0.2654	0.2654	-0.1349	-0.1349
health	0.1456	0.1456	0.0759	0.0759
income	-0.0276	-0.0276	-0.4581	-0.4582
poly(age, 2)1	21.0552	21.0554	1.9861	1.9859
poly(age, 2)2	3.2989	3.3001	-8.1680	-8.1689

Advantage: Can leverage tools such as the *effects* package.

Illustration: Effect displays

Illustration: Effect displays

Illustration: GAMs

Extension: Generalized additive models.

- Package *mgcv* can use the *ztpoisson* family to estimate GAM versions of both parts.
- Needs some further derivatives of link and variance function in the "family" object.
- Computed either analytically or numerically.

Application: Use simple splines for numeric covariates.

```
R> library("mgcv")
R> dv1z <- gam(factor(visits > 0) ~ gender +
+ s(health, k = 5) + s(income, k = 5) + s(age, k = 5),
+ data = DoctorVisits, family = binomial(link = "cloglog"))
R> dv1c <- gam(visits ~ gender +
+ s(health, k = 5) + s(income, k = 5) + s(age, k = 5),
+ data = DoctorVisits, family = ztpoisson, subset = visits > 0)
```

Illustration: GAMs

Illustration: Boosting

Extension: Boosting for GLMs or GAMs.

- Does not require the GLM framework, just an additive predictor and the score function of the model.
- Implemented in MBztpoisson() and MBbinomial() families for package *mboost*.
- Can be used for shrinkage and variable selection but requires selecting a tuning parameter mstop.

Application: Boosted GLMs.

Illustration: Boosting

Results: 33 iterations, most coefficients not selected at all.

		glm	glmboost
(Intercept	t)	-0.0313	-0.0691
genderfema	ale	-0.1349	0.0000
health		0.0759	0.0340
income		-0.4582	0.0000
poly(age,	2)1	1.9859	0.0000
poly(age,	2)2	-8.1689	0.0000

Analogously: gamboost with boosted B-splines, 17 iterations.

Comparison: Health effect displays for males with average income/age.

Illustration: Comparison

health

Summary

- Hurdle models are easy to fit and interpret.
- They can be regarded as combining two GLMs.
- Paves the way for GLM-based extensions.
- Numerical computations might have to use approximations of the link and variance function.

References

Zeileis A, Kleiber C (2015). *countreg: Count Data Regression.* R package version 0.1-5/r104. URL https://R-Forge.R-project.org/projects/countreg/

Zeileis A, Kleiber C, Jackman S (2008). "Regression Models for Count Data in R." *Journal of Statistical Software*, **27**(8), 1–25. doi:10.18637/jss.v027.i08