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Abstract: Weather forecasts are typically based on numerical weather predic-
tion models, where possible forecast errors can be corrected by statistical post-
processing methods. A common quantity to develop, test, and demonstrate new
post-processing methods is the surface air temperature which is frequently as-
sumed to follow a Gaussian distribution. Nevertheless, the classical Gaussian
distributional regression models which use only few covariates are not able to
account for all local features leading to strongly skewed residuals. The authors
demonstrate two approaches to overcome this problem: assuming a skewed re-
sponse distribution to directly account for skewness, and extending the classical
Gaussian distributional regression model by including all available information
from the weather prediction model in combination with a boosting variable se-
lection method.

The preliminary findings show satisfying results especially for an Alpine station
by either using a generalized logistic type I distribution with few covariates,
or using all available information plus an appropriate variable selection proce-
dure. Both approaches are able to improve the predictions with respect to overall
performance and calibration. Furthermore, similar results can be achieved for
non-Alpine sites although with smaller improvements.
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1 Introduction

Weather forecasts are typically generated by numerical weather prediction (NWP)
models. Nowadays, ensemble prediction systems (EPSs) are widely used where
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multiple NWP runs with slightly perturbed initial conditions and parameteri-
zations try to capture the forecast uncertainty. Nevertheless, it was found that
such models often show systematic errors due to simplified physical equations,
insufficient resolution, and unresolved processes (Bauer et al. 2015).

One possibility to correct for these errors are statistical post-processing meth-
ods. These methods have been tested extensively for various forecast quantities,
especially surface air temperature. Distributional regression models (Klein et al.
2015) are one common post-processing strategy. Corrected probabilistic forecasts
are obtained by modeling the parameters of a response distribution using linear
predictors including covariates provided by an EPS.

Statistical models using the Gaussian assumption are generally able to improve
the EPS output and to produce well-calibrated probabilistic temperature fore-
casts (Gneiting et al. 2015). However, this is not true for all geographical loca-
tions. Atmospheric processes associated with unresolved topographical features
such as wintry cold pools are per definition not present in the EPS model and
often lead to a skewed distribution. If these effects (e.g. wintry cold pools, strong
valley heating during summer) cannot be depicted by the regression model, the
residuals might be (strongly) skewed leading to inappropriately calibrated prob-
abilistic forecasts.

To overcome possible skewness-related errors, this study assesses two different
strategies for an Alpine and two non-Alpine stations. The benefit of a skewed
response distribution will be evaluated using different distributional regression
models. In addition, it is tested whether additional covariates from the EPS
remove the need of a skewed response distribution. Focus will be on the Alpine
station where pronounced skewness is visible in observed surface air temperature
records.

2 Regression Framework

Distributional regression models can be expressed in a general form:

y ∼ D
(
h1(θ1) = η1, . . . , hK(θK) = ηK) (1)

where D represents the parametric distribution for the response y with θk, k =
1, . . . ,K parameters. The parameters are linked to the additive predictors ηk
using a monotone link function hk (e.g., identity, logit, log). Each parameter
hk(θk) can be expressed by an additive predictor of the form:

ηk = ηk(x, βk) = f1k(x, β1k) + · · ·+ fPk(x, βPk) (2)

including various (possibly non-linear) functions fpk, p = 1, . . . , P .

3 Data and Model Setup for Comparison

Results for three different sites and +12h–+96h forecasts in 6-hourly intervals are
shown: Innsbruck located in the European Alps, Munich in the Alpine foreland,
and Hamburg in a plain environment. These sites are selected to ensure spatial
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independence of observation-forecast data pairs and to investigate the influence of
different topographical environments. The covariates are based on forecasts from
the European Centre for Medium-Range Weather Forecasts. The EPS provides
(discrete) probabilistic forecasts consisting of 50 exchangeable ensemble mem-
bers for a wide range of atmospheric variables. Two types of regression models
are estimated: “simple” models which only use 2m temperature forecasts, and
“complex” models using all available information (110 covariates) plus a smooth
cyclic spline effect representing the seasonality as a function of the day of the
year (season). Table 1 shows a summary of the models and their specification.
We make use of the logistic and generalized logistic distribution in order to test
distributions with slightly heavier tails compared to the classical Gaussian distri-
bution. Additionally, the generalized logistic distribution type I (Johnson et al.
1995) is able to account for possible skewness and has the distribution function

F (x) = 1/(1 + exp(−(x− µ)/σ))ζ , (3)

where ζ defines the additional shape parameter that has to be estimated. Due
to the large number of covariates in the “complex” models, a likelihood gradient
boosting approach (R package bamlss, Umlauf et al. 2017, R package version
0.1-1, https://r-forge.r-project.org/projects/bayesr/) is used for variable selec-
tion and coefficient estimation. A 10-fold block-wise cross-validation is further
performed to ensure full out-of-sample results.

The overall performance of the models is evaluated on the ignorance score (Ign),
and PIT histograms to visually assess calibration (Gneiting et al. 2015). To quan-
tify the information provided by individual PIT histograms the reliability index
RI =

∑I
i=1 |κi −

1
I
| is chosen (Feldmann et al. 2015). It accounts for absolute

deviations of each PIT-bin from perfect uniform calibration, where I defines the
number of bins and κi the relative fraction in each bin. Ideally, RI values are
close to zero. Additionally, the sharpness of the predictive distributions is veri-
fied in terms of average width of predictions intervals which should be as small
as possible.

4 Results and Discussion

The response distribution for surface temperature is often assumed to be Gaus-
sian in statistical ensemble post-processing studies. This is obviously not appro-
priate for the investigated Alpine station used in this study. The simple Gaussian

TABLE 1. Covariates used for distribution parameters µ, σ, ζ for all response dis-
tributions. “mean”/“sd”: ensemble means and standard deviations, and “season”:
smooth seasonal effect. Covariates in brackets only for “complex” models.

Response Distribution location µ scale σ shape ζ

Gaussian mean (+season) sd —
Logistic mean (+season) sd —
Generalized Logistic (I) mean (+season) sd season (+mean)
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(b) Skewed Logistic (Ign. 2.31)
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FIGURE 1. PIT histograms for the Alpine site. Left to right: Gaussian, logis-
tic, and skewed logistic models. Top column shows the “simple” models, bottom
column the “complex” models. Ignorance shown in brackets. Horizontal line in-
dicates perfect calibration.

regression model shows uncalibrated and strongly skewed predictions (Fig. 1a).
The skewed logistic distribution could clearly improve the predictive performance,
indicated by a smaller ignorance and an almost uniformly distributed PIT his-
togram (Fig. 1c). This improvement is also visible for all individual lead times in
terms of ignorance (Fig. 2a) and calibration (Fig. 2d).

A better overall performance in ignorance can be achieved using more complex
models which can select from a large number of EPS covariates. Although addi-
tional covariates remove the need of a skewed response distribution, the complex
Gaussian model still shows large errors in the tails (Fig. 1d), which might re-
sult from considerably smaller prediction intervals compared to simple Gaussian
model (Fig. 2g).

Overall best ignorance for the Alpine site was achieved using all available covari-
ates and a logistic response distribution (Fig. 1e), however, there is a distinct
trade-off between perfect calibration, lowest possible ignorance, and also com-
putational time. While simple models suggest the use of a skewed distribution,
complex models perform very similar on all three distributions and imply that
the Gaussian assumption might be sufficient. Nevertheless, these complex models
using a cross-validated boosting procedure are roughly ten times more expensive
in terms of computational time.

Similar results could also be found for the Alpine foreland site (Fig. 2b,e,h) and
the topographically plain site (Fig. 2c,f,i), if only with smaller magnitude of
improvements due to the two strategies and more visible at shorter lead times.
At these two sites, the raw EPS has generally a better forecast performance due
to less unresolved distinct local features in the EPS forecasts. Since better EPS
forecasts lead to more informative covariates, the overall predictive performance
of the statistical models is best at the plain site (Fig. 2c) and worst in the Alpine
environment (Fig. 2a).
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FIGURE 2. Verification measures for an Alpine, a foreland, and a plain site (left
to right) using “simple” models (black lines) and “complex” models (grey lines).
From top to bottom the ignorance score (Ign), reliability index (RI), and mean
width of the 80% prediction interval (PIW) are shown, evaluated at forecasting
lead times +12h–+96h. The 80% PIW defines the width between the predicted
0.1 and 0.9 quantile. Note that the Alpine site has a different range on the y-axis.
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5 Conclusion

The results shown highlight the importance of an appropriate distributional as-
sumption for post-processed surface air temperature forecasts, especially when
only the corresponding temperature covariate is used in the regression model. A
skewed logistic assumption improves calibration and forecast performance for all
tested sites, but more pronounced in the Alpine environment.

Compared to this skewed regression model, complex models cannot further im-
prove overall calibration but clearly obtain smaller prediction intervals which also
lead to better forecast performance. Generally, the difference in forecast perfor-
mance between the chosen distributional assumptions for the complex models
is rather small. This indicates that the Gaussian assumption is already suitable
given the large number of covariates. Nevertheless, these complex models are
computationally roughly 10 times more expensive, and hence can be difficult to
implement in an operational system.

The authors are currently extending this study by including additional sites to
analyze the most influential covariates. A small set of such covariates might al-
ready lead to an improvement of similar magnitude, while considerably cutting
down the computational costs. While the Gaussian assumption looks suitable for
the complex models considered, it has to be investigated whether this is still true
if the models only contain the most important covariates, especially for stations
located in a complex environment.
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