\square universität innsbruck

Who Will (Most Likely) Win the 2018 FIFA World Cup?

Achim Zeileis
https://eeecon.uibk.ac.at/~zeileis/

2018 FIFA World Cup prediction

2018 FIFA World Cup prediction

- Tournament forecast based on bookmakers odds.
- Main results: Brazil and Germany are the top favorites with winning probabilities of 16.6% and 15.8%, respectively.
- Top favorites are most likely to meet in the final (5.5\%), then with odds very slightly in favor of Brazil (50.6\% winning probability).

Bookmakers odds

Bookmakers odds: Motivation

Forecasts of sports events:

- Increasing interest in forecasting of competitive sports events due to growing popularity of online sports betting.
- Forecasts often based on ratings or rankings of competitors' ability/strength.

In football:

- Elo rating.
- Aims to capture relative strength of competitors yielding probabilities for pairwise comparisons.
- Originally developed for chess.
- FIFA rating.
- Official ranking, used for seeding tournaments.
- Often criticized for not capturing current strengths well.
- June 2018: Decision to change calculation to be more similar to Elo.

Bookmakers odds: Motivation

Alternatively: Employ bookmakers odds for winning a competition.

- Bookmakers are "experts" with monetary incentives to rate competitors correctly. Setting odds too high or too low yields less profits.
- Prospective in nature: Bookmakers factor not only the competitors abilities into their odds but also tournament draws/seedings, home advantages, recent events such as injuries, etc.
- Statistical "post-processing" needed to derive winning probabilities and underlying abilities.

Bookmakers odds: Statistics

Odds: In statistics, the ratio of the probabilities for/against a certain event,

$$
\text { odds }=\frac{p}{1-p} .
$$

Bookmakers odds: Statistics

Odds: In statistics, the ratio of the probabilities for/against a certain event,

$$
\text { odds }=\frac{p}{1-p}
$$

Illustrations:

- Even odds are "50:50" (=1).
- Odds of 4 correspond to probabilities $4 / 5=80 \%$ vs. $1 / 5=20 \%$.

Bookmakers odds: Statistics

Odds: In statistics, the ratio of the probabilities for/against a certain event,

$$
\text { odds }=\frac{p}{1-p}
$$

Illustrations:

- Even odds are "50:50" (=1).
- Odds of 4 correspond to probabilities $4 / 5=80 \%$ vs. $1 / 5=20 \%$.

Thus: Odds can be converted to probabilities and vice versa.

$$
\begin{aligned}
p & =\frac{o d d s}{o d d s+1} \\
1-p & =\frac{1}{o d d s+1}
\end{aligned}
$$

Bookmakers odds: Quoted odds

Quoted odds: In sports betting, the payout for a stake of 1.

Bookmakers odds: Quoted odds

Quoted odds: In sports betting, the payout for a stake of 1.
Fair bookmaker: Given the probability p for the event the bookmaker could set

$$
\text { quoted odds }=\frac{1-p}{p}+1
$$

Bookmakers odds: Quoted odds

Quoted odds: In sports betting, the payout for a stake of 1.
Fair bookmaker: Given the probability p for the event the bookmaker could set

$$
\text { quoted odds }=\frac{1-p}{p}+1
$$

Expected payout: Wins and losses cancel out each other.

$$
p \cdot \frac{1-p}{p}-(1-p) \cdot 1=0
$$

Bookmakers odds: Quoted odds

Quoted odds: In sports betting, the payout for a stake of 1.
Fair bookmaker: Given the probability p for the event the bookmaker could set

$$
\text { quoted odds }=\frac{1-p}{p}+1
$$

Expected payout: Wins and losses cancel out each other.

$$
p \cdot \frac{1-p}{p}-(1-p) \cdot 1=0
$$

Thus: "Naive" computation of probability

$$
p=\frac{1}{\text { quoted odds }}
$$

Bookmakers odds: Quoted odds

Illustration: Quoted odds for bwin obtained on 2018-05-20.

Team	Quoted odds	"Naive" probability
Brazil	5.0	0.200
Germany	5.5	0.182
Spain	7.0	0.143
France	7.5	0.133
	\vdots	
Saudi Arabia	501.0	0.002
Panama	1001.0	0.001

Bookmakers odds: Quoted odds

Illustration: Quoted odds for bwin obtained on 2018-05-20.

Team	Quoted odds	"Naive" probability
Brazil	5.0	0.200
Germany	5.5	0.182
Spain	7.0	0.143
France	7.5	0.133
	\vdots	
Saudi Arabia	501.0	0.002
Panama	1001.0	0.001

Problem: Probabilities of all 32 teams sum to $1.143>1$.

Bookmakers odds: Adjustment

Reason: Bookmakers do not give honest judgment of winning chances but include a profit margin known as "overround".

Simple solution: Adjust quoted odds by factor 1.143 so that probabilities sum to 1 .

Bookmakers odds: Adjustment

Reason: Bookmakers do not give honest judgment of winning chances but include a profit margin known as "overround".

Simple solution: Adjust quoted odds by factor 1.143 so that probabilities sum to 1 .

Team	Adjusted odds	Probability
Brazil	5.71	0.175
Germany	6.28	0.159
Spain	8.00	0.125
France	8.57	0.117
	\vdots	

Bookmakers odds: Overround

Refinement: Apply adjustment only to the odds, not the the stake.

$$
\text { quoted odds }_{i}=\text { odds }_{i} \cdot \delta+1
$$

- where odds j_{i} is the bookmaker's "true" judgment of the odds for competitor i,
- δ is the bookmaker's payout proportion (overround: $1-\delta$),
- and +1 is the stake.

Bookmakers odds: Overround

Winning probabilities: The adjusted odds s_{i} then
corresponding to the odds of competitor i for losing the tournament. They can be easily transformed to the corresponding winning probability

$$
p_{i}=\frac{1}{o d d s_{i}+1} .
$$

Determining the overround: Assuming that a bookmaker's overround is constant across competitors, it can be determined by requiring that the winning probabilities of all competitors (here: all 32 teams) sum to $1: \sum_{i} p_{i}=1$.

Bookmakers odds: 2018 FIFA World Cup

Data processing:

- Quoted odds from 26 online bookmakers.
- Obtained on 2018-05-20 from http://www.bwin.com/ and http://www.oddschecker.com/.
- Computed overrounds $1-\delta_{b}$ individually for each bookmaker $b=1, \ldots, 26$ by unity sum restriction across teams $i=1, \ldots, 32$.
- Median overround is 15.2\%.
- Yields overround-adjusted and transformed winning probabilities $p_{i, b}$ for each team i and bookmaker b.

Modeling consensus and agreement

Modeling consensus and agreement

Goal: Get consensus probabilities by aggregation across bookmakers.

Straightforward: Compute average for team i across bookmakers.

$$
\bar{p}_{i}=\frac{1}{26} \sum_{b=1}^{26} p_{i, b} .
$$

Modeling consensus and agreement

Goal: Get consensus probabilities by aggregation across bookmakers.

Straightforward: Compute average for team i across bookmakers.

$$
\bar{p}_{i}=\frac{1}{26} \sum_{b=1}^{26} p_{i, b} .
$$

Refinements:

- Statistical model assuming for latent consensus probability p_{i} for team i along with deviations $\varepsilon_{i, b}$.
- Additive model is plausible on suitable scale, e.g.,

$$
\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)
$$

Modeling consensus and agreement

Model: Bookmaker consensus model

$$
\operatorname{logit}\left(p_{i, b}\right)=\operatorname{logit}\left(p_{i}\right)+\varepsilon_{i, b},
$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\varepsilon_{i, b}$.

Modeling consensus and agreement

Model: Bookmaker consensus model

$$
\operatorname{logit}\left(p_{i, b}\right)=\operatorname{logit}\left(p_{i}\right)+\varepsilon_{i, b},
$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\varepsilon_{i, b}$.

Analogously: Methodology can also be used for consensus ratings of default probability in credit risk rating of bank b for firm i.

Modeling consensus and agreement

Here:

- Simple fixed-effects model with zero-mean deviations.
- Consensus logits are simply team-specific means across bookmakers:

$$
\widehat{\operatorname{logit}\left(p_{i}\right)}=\frac{1}{26} \sum_{b=1}^{26} \operatorname{logit}\left(p_{i, b}\right)
$$

- Consensus winning probabilities are obtained by transforming back to the probability scale:

$$
\left.\hat{p}_{i}=\operatorname{logit}^{-1}\left(\widehat{\operatorname{logit}\left(p_{i}\right.}\right)\right) .
$$

- Model captures 98.7% of the variance in $\operatorname{logit}\left(p_{i, b}\right)$ and the associated estimated standard error is 0.184 .

Modeling consensus and agreement

Team	FIFA code	Probability	Log-odds	Log-ability	Group
Brazil	BRA	16.6	-1.617	-1.778	E
Germany	GER	15.8	-1.673	-1.801	F
Spain	ESP	12.5	-1.942	-1.925	B
France	FRA	12.1	-1.987	-1.917	C
Argentina	ARG	8.4	-2.389	-2.088	D
Belgium	BEL	7.3	-2.546	-2.203	G
England	ENG	4.9	-2.957	-2.381	G
Portugal	POR	3.4	-3.353	-2.486	B
Uruguay	URU	2.7	-3.566	-2.566	A
Croatia	CRO	2.5	-3.648	-2.546	D
		\vdots			

Abilities and tournament simulations

$$
\begin{aligned}
& \operatorname{Pr}(i \text { beats } j)=\pi_{i, j} \\
& =\frac{\text { ability }_{i}}{\text { ability }_{i}+\text { ability }_{j}}
\end{aligned}
$$

```
sim_log_abilities <- function(logodds, groups,
    start = NuLL, n = 100000, rounds = $ .
    Loss = function(x,y] mean(abs(x - y), na.rm = TRUE),
    tol = 9.1, maxiter = 1.09, eps = 1, rate =
    cores = NULL., trace = TR'E)
    ## main input: wlnning log-odds
    stopifnot(! is . null( (names(logodds)))
    nam <- names(logodds)
    target < logodds
    if(is.null(start)) start <- logodds
    if(is.null(names(start))) names(start) <- nam
    ## group list
    If[is.null(names(groups))) {
        names(groups) s- nam
    } else {
    groups < groups[nam]
    groups <- tapply(groups, groups, names)
```

 \#\# simulate a full tournament run
 sim1 < function(log_abilities)
 Simulate_tournament \(\left(n=n\right.\), probs \(=\) get_probs_abilities \(\left(\exp \left(\log _{-} a b i l i t i e s\right)\right)\),
 groups \(=\) groups, cores \(=\) cores, rounds \(=\) rounds)
 iter
 If(trace) cat("Start:", start, "\n")
$x<-$ list ($)$
$y<-$ list ()
loss value <- list (1)
X[[I]] <- start[names(target]]
repeat \{
result s- sim1(x[[iter]])
winner_i <- factorisapply(result, "[[", "winner"), levels = nam]
prob_i i^{-}- pmax(prop,table(table(winner_i)), I/n)
y[[1ter]] <- qlogis(prob_i) [names(target)]
if(trace)
cat ("* Iteration:", iter, "\n")
cat("* Log_abilties:", X[iter]]. "Vn")
loss_value[[iter]] <- loss[y[[iter]], target]
if (trace) cat ("Value of the loss function:", round(loss_value[Iiter]], 4), " $\backslash n^{\prime \prime}$)
if ((loss_value[[iter]] < tol) || (iter >= maxiter))
if (break
break
iter
$\mathrm{x}[$ iter $]]$ < $\mathrm{x}[$ iter-1]] - (y[[iter-1]] - target) /abs(y[[iter-1]] - target) *eps/(
ist $(\log$ abilities $=x$, result $=$ result, loss_value $=$ loss_value]

Abilities and tournament simulations

Further questions:

- What are the likely courses of the tournament that lead to these bookmaker consensus winning probabilities?
- Is the team with the highest probability also the strongest team?
- What are the winning probabilities for all possible matches?

Motivation:

- Tournament draw might favor some teams.
- Tournament schedule was known to bookmakers and hence factored into their quoted odds.
- Can abilities (or strengths) of the teams be obtained, adjusting for such tournament effects?

Abilities and tournament simulations

Answer: Yes, an approximate solution can be found by simulation when

- adopting a standard model for paired comparisons (i.e., matches),
- assuming that the abilities do not change over the tournament.

Model: Bradley-Terry model for winning/losing in a paired comparison of team i and team j.

$$
\operatorname{Pr}(i \text { beats } j)=\pi_{i, j}=\frac{\text { ability }_{i}}{\text { ability }_{i}+\text { ability }_{j}} .
$$

Abilities and tournament simulations

"Reverse" simulation:

- If the team-specific ability $_{i}$ were known, pairwise probabilities $\pi_{i, j}$ could be computed.
- Given $\pi_{i, j}$ the whole tournament can be simulated (assuming abilities do not change and ignoring possible draws during the group stage).
- Using "many" simulations (here: $1,000,000$) of the tournament, the empirical relative frequencies \tilde{p}_{i} of each team i winning the tournament can be determined.
- Choose ability $_{i}$ for $i=1, \ldots, 32$ such that the simulated winning probabilities \tilde{p}_{i} approximately match the consensus winning probabilities \hat{p}_{i}.
- Found by simple iterative local search starting from log-odds.

Abilities and paired comparisons
 Team j

PANKSATUNIRNKORCRGMARAUSJPN ISL NGAPERSENSRBEGYSWESUIMEXDENPOLRUSCOLCROURUPORENGBELARGFRAESPGERBRA

Tournament simulations: Survival curves

Outcome verification

Outcome verification

Illustration: Check results for UEFA Euro 2016.
Question: Was the bookmaker consensus model any good?

- Ex post the low predicted winning probability for Portugal (4.1\%) seems wrong.
- However, they profited from Spain's and England's poor performances in the last group stage games.
- And they only won 1 out of 7 games in normal time.
- Even in the final Gignac might as well have scored a goal instead of hitting the post in minute 92...

Problems:

- Just a single observation of the tournament and at most one observation of each paired comparison.
- Hard to distinguish between an unlikely outcome and systematic errors in the predicted (prob)abilities.

Outcome verification

Possible approaches:

- Compare forecasts with the observed tournament ranking (1 POR, 2 FRA, 3.5 WAL, 3.5 GER, ...).
- Benchmark against Elo and FIFA ratings.
- Note that the Elo rating also implies ability scores based on which pairwise probabilities and "forward" simulation of tournament can be computed:

$$
\text { ability }_{E l o, i}=10^{E l o_{i} / 400}
$$

- Check whether pairwise probabilities roughly match empirical proportions from clusters of matches.

Outcome verification: Ranking

Spearman rank correlation of observed tournament ranking with bookmaker consensus model (BCM) as well as FIFA and Elo ranking:

BCM (Probabilities)	0.523
BCM (Abilities)	0.436
Elo (Probabilities)	0.344
Elo	0.339
FIFA	0.310

Outcome verification: BCM pairwise prob.

Outcome verification: Elo pairwise prob.

Outcome verification: BCM abilities

Outcome verification: Elo abilities

Discussion

Summary:

- Expert judgments of bookmakers are a useful information source for probabilistic forecasts of sports tournaments.
- Winning probabilities are obtained by adjustment for overround and averaging on log-odds scale.
- Competitor abilities can be inferred by post-processing based on pairwise-comparison model with "reverse" tournament simulations.
- Approach outperformed Elo and FIFA ratings for the last UEFA Euros and correctly predicted the final 2008 and winner 2012.

Limitations:

- Matches are only assessed in terms of winning/losing, i.e., no goals, draws, or even more details.
- Inherent chance is substantial and hard to verify.

References

Zeileis A, Leitner C, Hornik K (2018). "Probabilistic Forecasts for the 2018 FIFA World Cup Based on the Bookmaker Consensus Model." Working Paper 2018-09, Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Universität Innsbruck. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2018-09. Blog: https://bit.ly/fifa-forecast.

Zeileis A, Leitner C, Hornik K (2016). "Predictive Bookmaker Consensus Model for the UEFA Euro 2016." Working Paper 2016-15. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-15.

Leitner C, Zeileis A, Hornik K (2011). "Bookmaker Consensus and Agreement for the UEFA Champions League 2008/09." IMA Journal of Management Mathematics, 22(2), 183-194. doi:10.1093/imaman/dpq016.

Leitner C, Zeileis A, Hornik K (2010). "Forecasting Sports Tournaments by Ratings of (Prob)abilities: A Comparison for the EURO 2008." International Journal of Forecasting, 26(3), 471-481. doi:10.1016/j.ijforecast.2009.10.001.

