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Abstract

In differential item functioning analysis, a common metric is necessary to compare
item parameters between groups of test-takers. In the Rasch model, the same restriction
is placed on the item parameters in each group to define a common metric. However,
the question how the items in the restriction — termed anchor items — are selected ap-
propriately is still a major challenge. This article proposes a conceptual framework for
categorizing anchor methods: The anchor class to describe characteristics of the anchor
methods and the anchor selection strategy to guide how the anchor items are determined.
Furthermore, the new iterative forward anchor class is proposed. Several anchor classes
are implemented with different anchor selection strategies and are compared in an ex-
tensive simulation study. The results show that the new anchor class combined with the
single-anchor selection strategy is superior in situations where no prior knowledge about
the direction of DIF is available.

Keywords: item response theory (IRT), Rasch model, anchor methods, anchor selection, con-
tamination, differential item functioning (DIF), item bias.

1. Introduction

The analysis of differential item functioning (DIF) in item response theory (IRT) research
investigates the violation of the invariant measurement property among subgroups of exami-
nees, such as male and female test-takers. Invariant item parameters are necessary to assess
ability differences between groups in an objective, fair way. If the invariance assumption is
violated, different item characteristic curves occur in subgroups. In this paper, we focus on
uniform DIF where one group has a higher probability of solving an item (given the latent
trait) over the entire latent continuum and the group differences in the logit remain constant
(Mellenbergh 1982; Swaminathan and Rogers 1990).

A variety of testing procedures for DIF on the item-level is available (for an overview see,
e.g., Millsap and Everson 1993). These testing procedures can be divided into IRT-based
methods that rely on the estimation of an IRT model and non-IRT methods, following a
classification used, e.g., by Magis, Raiche, Béland, and Gérard (2011). They list Lord’s x?
test, Raju’s area method and the likelihood ratio test as the most commonly known IRT-based
methods, and the Mantel-Haenszel method, the SIBTEST method, and the logistic regression
procedure as the most widely used non-IRT methods. In the analysis of DIF using IRT, item
parameters are to be compared across groups. Mostly, research focuses on the comparison of
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2 Anchor Methods for DIF Detection

two pre-defined groups, the reference and the focal group. Thus, a common scale for the item
parameters of both groups is required to assess meaningful differences in the item parameters.
The minimum (necessary but not sufficient) requirement for the construction of a common
scale in the Rasch model is to place the same restriction on the item parameters in both
groups (Glas and Verhelst 1995). The items included in the restriction are termed anchor
1tems.

An anchor method determines how many items are used as anchor items and how they are
located. The choice of the anchor items has a high impact on the results of the DIF analysis:
If the anchor includes one or more items with DIF, the anchor is referred to as contaminated.
In this case, the scales may be biased and items that are truly free of DIF may appear to
have DIF. Therefore, the false alarm rate may be seriously inflated — in the worst case all
DIF-free items seem to display DIF (Wang 2004) — and the results of the DIF analysis are
doubtful, as various examples demonstrate (see Section 2). Even though the importance of
the anchor method is undeniable, Lopez Rivas, Stark, and Chernyshenko (2009, p. 252) claim
that “[a]t this point, little evidence is available to guide applied researchers through the process
of choosing anchor items”. Consequently, the aim of this article is to provide guidelines how
to choose an appropriate anchor for DIF analysis in the Rasch model.

In the interest of clarity, we introduce a new conceptual framework that distinguishes between
the anchor class and the anchor selection strategy. Firstly, anchor classes that describe the
pre-specification of the anchor characteristics are reviewed and a new anchor class named the
iterative forward anchor class is introduced. Secondly, the anchor selection strategy deter-
mines which items are chosen as anchor items. The complete procedure to choose the anchor
is then called an anchor method. To derive guidelines which anchor method is appropriate for
DIF detection in the Rasch model, we conduct an extensive simulation study. In our study,
we compare the all-other, the constant, the iterative backward and the newly suggested iter-
ative forward anchor class for the first time. Furthermore, our study is to our knowledge the
first to systematically contrast different anchor selection strategies that are combined with
the anchor classes. We discuss the all-other (introduced as rank-based strategy by Woods
2009) and the single-anchor selection strategy (based on a suggestion by Wang 2004). Fi-
nally, practical recommendations are given to facilitate the anchor process for DIF analysis
in the Rasch model. In the next section, necessary technical details are explained. The con-
ceptual framework is introduced in detail in Section 3. The simulation study is presented in
Section 4 and the results are discussed in Section 5. The problem of contamination and its
impact are addressed in Section F. Characteristics of the selected anchor items are discussed
in Section 7. A concluding summary and practical recommendations are given in Section 8.

2. The anchor process for the Rasch model

In the following, the anchor process is technically described and analyzed for the Rasch model.
The item parameter vector is 8 = (B, ... ,ﬁk)T € R*, where k denotes the number of items
in the test. In the following, it is estimated using the conditional maximum likelihood (CML)
estimation due to its unique statistical properties, its widespread application (Wang 2004)
and the fact that its estimation process does not rely on the person parameters (Molenaar
1995).
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2.1. Scale indeterminacy

As the origin of the scale in the Rasch model can be arbitrarily chosen (Fischer 1995) — what
is often referred to as scale indeterminacy — one linear restriction of the form

k
S =0, (1)

with constants dy holding Elgzl dp # 0 is placed on the item parameter estimates By (Eggen
and Verhelst 2006). Thus, in the Rasch model only k — 1 parameters are free to vary and
one parameter is determined by the restriction. Note that equation 1 includes various com-
monly used restrictions such as setting one estimated item parameter Be =0 or restricting
all estimated item parameters to sum zero ZIZ 1 Be=0 (Eggen and Verhelst 2006). Without
loss of generality, we here estimate the item parameter vector B with the employed restriction
51 = 0. The corresponding covariance matrix Var(ﬁ) then contains zero entries in the first
row and in the first column. In the following, we discuss different restrictions for which the
sum of the estimated item parameters of a selection of items is set to zero. These restrictions
can be obtained by transformation using the equations

b = AB (2)
and Var(f) = AVar(B)A", (3)

where A = [, — Zkl
=1
and a is a vector with one entries for those elements ay that are included in the restriction and

zero entries otherwise (e.g., a = (1,0,1,0,0,...) " including item 1 and item 3). Additionally,

- 1x-a', I, denotes the identity matrix, 15 denotes a vector of one entries
14

the entries of the rank deficient covariance matrix \//a\r(ﬁ ) in the row and in the column of the
item that is first included in the restriction are set to zero. While for the estimation itself,
the choice of the restriction is arbitrary, for the anchor process a careful consideration of the
linear restriction that is now employed in each group ¢ is necessary. A necessary but not
sufficient requirement in order to build a common scale for the item parameters of two groups
is that the same restriction is employed in both groups (Glas and Verhelst 1995). Items in
the restriction are termed anchor items and the restriction can be rewritten as

Zafﬁg = Zﬁe =0, (4)

leA

where the set A is termed the set of anchor items or the anchor. The estimated and anchored
item parameters are denoted Bg . Equation 4 includes various commonly used anchor methods
such as setting one estimated item parameter Bg to zero (/3’2? =0, forone £ € {1,2,...,k}) for
the so called constant single-anchor method or restricting all items except the studied item j
to sum to zero in each group (Z# j B’g = 0) for the so called all-other anchor method. The
item parameters and covariance matrices, estimated separately in each group, are transformed
to the respective anchor method by means of equation 2 and 3, so that all items are then
shifted on the scale by —ﬁ >ovea 3.
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2.2. Item-wise Wald test

As a statistical test for DIF, we will focus on the item-wise Wald test here (see, e.g., Glas
and Verhelst 1995), but the underlying ideas in the next section can also be applied to other
tests for DIF. Note that this item-wise Wald test is applied to the CML estimates (as in Glas
and Verhelst 1995) and not the joint maximum likelihood (JML) estimates (as in Lord 1980).
The inconsistency of the JML estimates leads to highly inflated false alarm rates (see, e.g.,
McLaughlin and Drasgow 1987). The recent work of Woods, Cai, and Wang (2013) showed
that an improved version of the Wald test, termed Wald-1 (see Paek and Han 2013, and the
references therein), also displayed well-controlled false alarm rates in their simulated settings
if the anchor items were DIF-free. Since the Wald-1 test also requires anchor items, it can in
principle be combined with the anchor methods discussed here as well.

The rationale behind the Wald test is that DIF is present if the item difficulties are not equal
across groups. The test statistic T for the null hypothesis Hy : 5§ef = ijoc’ where ﬁ;ef and

B]f-oc denote the item difficulties for reference and focal group for item j and B;ef and B]foc the
corresponding estimated item parameters using the anchor A7, has the following form:

pref _ Hfoc oref  pAfoc
Bi” — 5 B — B

\/Var(B]r-ef — B]f-oc) \/@(Bref)jﬂ‘ + @(ﬁfoc)j7j

T; ()

Note that, the estimated and anchored item parameters 39 = 39 (A7), which can be calculated
using equation 2, depend on the anchor and, hence, so does the test statistic 7} = Tj(.Aj ). A
detailed empirical example is provided in the appendix. The anchor set .47 may depend on
the studied item (as is the case for the all-other method). If the anchor is constant regardless
which item is tested for DIF, it is denoted A in the following.

From a theoretical perspective and from our instructive example in the appendix, it is obvious
that an appropriate anchor is crucial for the results of the DIF analysis. Previous simulation
studies have compared different selections of anchor methods. Empirical findings also show
that, ideally, the anchor items should be DIF-free. Unfortunately, since prior to DIF analysis
it cannot be known which items are DIF-free, we face a somewhat circular problem, as pointed
out by Shih and Wang (2009). If DIF items are included in the anchor, this contamination
may lead to seriously inflated false alarm rates in DIF detection (see, e.g., Wang and Yeh 2003;
Wang 2004; Wang and Su 2004; Finch 2005; Woods 2009) that “can result in the inefficient
use of testing resources, and [...] may interfere with the study of the underlying causes of
DIF” (Jodoin and Gierl 2001, p. 329). Naturally, the risk of contamination would suggest to
use only few items in the restriction (i.e. a short anchor), but the simulation results also show
that the statistical power increases with the length of a DIF-free anchor (Thissen, Steinberg,
and Wainer 1988; Wang and Yeh 2003; Wang 2004; Shih and Wang 2009; Woods 2009).

3. A conceptual framework for anchor methods

In the following, we introduce a conceptual framework in which a variety of previously sug-
gested anchor methods can be embedded. The new conceptual framework distinguishes be-
tween the anchor class and the anchor selection strategy.
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3.1. Anchor classes

In our conceptual framework anchor classes describe characteristics of the anchor that answer
the following questions: Is the anchor length pre-defined? If so, how many items are included
in the anchor? Is the anchor determined by the anchor class itself or is an additional anchor
selection strategy necessary? Are iterative steps intended?

The equal-mean and the all-other anchor class. In the equal-mean-difficulty anchor class (see,
e.g., Wang 2004, and the references therein) all items are restricted to have the same mean
difficulty (typically zero) in both groups, whereas in the all-other anchor class (used, e.g., by
Cohen, Kim, and Wollack 1996) the sum of all item difficulties — except the item currently
tested for DIF — is restricted to be zero and the anchor set A7 = {1,...,k} \ j depends on
the studied item 7 = 1,...,k. Both anchor classes have a pre-defined anchor length but no
additional anchor selection is necessary as the items included in the restriction are already
determined by the anchor class itself. The equal-mean-difficulty and the all-other class only
differ in one anchor item and, therefore, essentially lead to similar results (cf. Wang 2004)
and, hence, only the all-other method is included in the following simulation study.

The constant anchor class. The constant anchor class (used, e.g., by Thissen et al. 1988;
Wang 2004; Shih and Wang 2009) includes a pre-defined number of the items (e.g., 1 or 4
items according to Thissen et al. 1988) or a certain proportion of the items (e.g., 10% or 20%
according to Woods 2009) as anchor. The term constant reflects the constant set of anchor
items with a pre-defined, constant anchor length. In our simulation study, we implemented
the constant anchor class with one single anchor item as well as the constant anchor including
four items, which is supposed to assure sufficient power (cf. e.g., Shih and Wang 2009; Wang,
Shih, and Sun 2012). The constant anchor class needs to be combined with an explicit anchor
selection strategy. For the constant single anchor class, the first item of the ranking order of
candidate anchor items is used as anchor, whereas for the constant four anchor class, the first
four items of the ranking order of candidate anchor items are used as anchor.

The iterative backward anchor class. The iterative backward anchor class (used, e.g., by
Drasgow 1987; Candell and Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina 2002) includes
a variety of iterative methods that have been suggested, discussed and combined with different
statistical methods to assess DIF. Here, we focus on the commonly used re-linking procedure
where one parameter estimation step suffices to conduct DIF analysis. Firstly, the scales of
both groups are linked on (approximately) the same metric, e.g., by using the all-other anchor
method. Then, the DIF items are excluded from the current anchor,' the scales are re-linked
using the new current anchor, the DIF analysis is carried out for all items except for the first
anchor candidate (see Section 3.3) and the steps are repeated until two steps reach the same
results (e.g., Drasgow 1987; Candell and Drasgow 1988; Hidalgo-Montesinos and Lopez-Pina
2002). This iterative procedure is referred to here as the iterative backward anchor class,
since the method includes the majority of items in the anchor at the beginning. Then, it
successively excludes items from the anchor. The research of Wang and Yeh (2003), Wang
(2004), Shih and Wang (2009) and Wang et al. (2012) made clear that the direction of DIF
influences the results of the DIF analysis using all other items as anchor: If all items favor
one group, what is referred to as unbalanced DIF, DIF tests using all other items as anchor
result in inflated false alarm rates. Hence, in complex DIF situations such as unbalanced DIF,

'In case all items were excluded from the anchor (which happened in only 7 out of 154,000 replications)
one single anchor item was chosen randomly in our simulation study.
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6 Anchor Methods for DIF Detection

the initial step of the iterative backward anchor class, that includes all other items as anchor,
may lead to biased test results.

The iterative forward anchor class. Inspired by this result, we introduce another possible
strategy to overcome the problem that the anchor selection is based on initially biased test
results: the iterative forward anchor class. As opposed to the iterative backward class, we
suggest to build the iterative anchor in a step-by-step forward procedure. Starting with the
first candidate anchor item — determined by the anchor selection strategy — as single anchor
item, we link the scales and estimate DIF. Then, iteratively, one item — located again by means
of the respective anchor selection strategy — is added to the current anchor and DIF analysis
is conducted using the new current anchor. These steps are repeated as long as the current
anchor length is shorter than the number of non-significant test results in the current DIF tests
(in short the number of currently presumed DIF-free items). Unlike the iterative backward
anchor class where items are successively excluded, now items are successively included in the
anchor. An anchor selection strategy is again needed to guide which items are included in
the anchor.

3.2. Anchor selection strategies

The anchor selection strategies discussed here are based on preliminary item analyses. This
means that — before the final DIF test is done — preliminary DIF tests are conducted to locate
(ideally) DIF-free anchor items. The (non-statistical) alternative relying on expert advice and
certain prior knowledge of DIF-free anchor items (Wang 2004; Woods 2009) will not often
be possible in practice (for a literature overview where this approach fails see Frederickx,
Tuerlinckx, De Boeck, and Magis 2010).

The all-other anchor selection. In our simulation study, we implemented different anchor
selection strategies that provide a ranking order of candidate anchor items. One anchor
selection strategy investigated in this article is the rank-based strategy proposed by Woods
(2009) that we term all-other (AO) anchor selection strategy. Initially, every item is tested for
DIF using all other items as anchor. The ranking order of candidate anchor items is defined
according to the lowest rank(s) of the resulting (absolute) DIF test statistics.

The next candidate and the single-anchor anchor selection. Originally, Wang (2004) suggested
an anchor method that we refer to as the next candidate (NC) method. It includes both an
anchor selection and an anchor class and is, thus, discussed in detail in the next section.
Moreover, we simplify the suggestion of Wang (2004) for the anchor selection and call it the
single-anchor (SA) selection strategy. It is, to our knowledge, for the first time systematically
compared with the all-other strategy using various anchor classes. With every item acting as
single-anchor, every other item is tested for DIF. Again, the anchor sets A’ vary across the
studied items and k — 1 tests result for every item j = 1,..., k of the test. The ranking order
of candidate anchor items is defined according to the smallest number of significant results. If
more than one item displays the same number of significant results, one of the corresponding
items is selected randomly.

3.3. Anchor methods

An anchor method results as a combination of an anchor class with an anchor selection
strategy (in cases where the latter is necessary). The anchor methods to be investigated in
this article are now presented and summarized in Table 1. All anchor methods that rely on an
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anchor selection consist of two steps: Firstly, the anchor selection is carried out to determine
a ranking order of candidate anchor items and the procedure defined by the anchor class is
carried out to determine the final anchor. Secondly, the final anchor found in the first step is
then used for the assessment of DIF. This procedure was termed DIF-free-then-DIF strategy
by Wang et al. (2012). The final anchor A is independent of which item is studied. Since k—1
parameters are free in the estimation, only k& — 1 estimated standard errors result (Molenaar
1995), the k-th standard error is determined by the restriction and, hence, only k —1 tests can
be carried out and one item in the final assessment of DIF obtains no DIF test statistic. Thus,
the first item selected as anchor item is declared DIF-free in the final DIF test, a decision
that may be false if even the item with the lowest rank does indeed have DIF, but in this case
this would result in a lower hit rate in the final test results. All remaining items are tested
for DIF using the final anchor \A. The all-other anchor method (all-other) does not require
an additional anchor selection and k tests result using the anchor A7 = {1,...,k}\ j. The
constant anchor class consisting of one anchor item or four anchor items can be combined
with the all-other selection strategy (single-anchor-AQ, four-anchor-AQO) and also with the
single-anchor selection strategy (single-anchor-SA, four-anchor-SA).

Furthermore, we implemented the original suggestion of Wang (2004) that we refer to as the
four-anchor next candidate (NC) method. In the four-anchor-NC method, the item that is
selected by the SA-selection strategy functions as the current single-anchor and DIF tests
are conducted (see Wang 2004, p. 249). In this step, one DIF test statistic results for every
item except for the anchor. The next candidate anchor item is the item that displays “the
least magnitude of DIF” (Wang 2004, p. 250) among all remaining items that we defined as
lowest absolute DIF test statistic from the tests using the current single-anchor item. The
candidate item is added to the current anchor only if its DIF test result is not significant
(Wang 2004). The next DIF test is conducted using the new current anchor and the next
candidate item is selected again if it has the lowest absolute DIF test statistic among all
remaining items and displays no significant DIF.? These steps are repeated until either the
next candidate anchor item displays DIF or the maximum anchor length (of four items in
our implementation of the four-anchor-NC method) is reached. The iterative backward class
is implemented using all-other items as anchor in the initial step and then excluding DIF
items from the anchor (iterative-backward-AQ) as it is widely used in practice (e.g., Edelen,
Thissen, Teresi, Kleinman, and Ocepek-Welikson 2006). Note that the iterative backward
class is not combined with the SA-selection since the latter provides only a ranking order
of candidate anchor items, but no information which set of items should be used in the
initial step. The newly suggested iterative forward class can be combined with the all-other
anchor selection strategy (iterative-forward-AQ) and with the single-anchor selection strategy
(iterative-forward-SA).

4. Simulation study

To evaluate which of the anchor methods presented in the previous section (for a brief descrip-

2Technically speaking, this procedure is a combination of the constant and the iterative anchor class because
it allows a varying anchor length, but its length is limited to a pre-specified number of items. However, since in
our simulation it turned out that always four anchor items were selected for the final anchor, here we classify
the anchor class as constant. Note that we employed a significance level of .05, but of course it would also be
possible to choose a higher level such as .30 as suggested by Wang (2004).
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Anchor  Anchor  Combination Initial step and anchor selection strategy
class selection
all-other none all-other Initial step: Each item is tested for DIF using all
remaining items as anchor.
cf. e.g., Woods Selection strategy: No additional selection strategy is
(2009) required.

constant  AO

SA

single-anchor-AO
Woods (2009)
single-anchor-SA

Wang (2004)

Initial step: Each item is tested for DIF using all
remaining items as anchor.

Selection strategy: The item with the lowest absolute
DIF statistic (AO) is chosen.

Initial step: Each item is tested for DIF using every other
item as single-anchor.

Selection strategy: The item with the smallest number of
significant DIF tests (SA) is chosen.

AO

SA

NC

four-anchor-AO

Woods (2009);
Wang et al. (2012)

four-anchor-SA

Wang (2004)

four-anchor-NC

proposed by Wang
(2004)

Initial step: Each item is tested for DIF using all
remaining items as anchor.

Selection strategy: The four anchor items corresponding
to the lowest ranks of the absolute DIF statistics from
the initial step (AO) are chosen.

Initial step: Each item is tested for DIF using every other
item as single-anchor.

Selection strategy: The four anchor items corresponding
to the smallest number of significant DIF tests (SA) are
chosen.

Initial step: Each item is tested for DIF using every other
item as single-anchor.

Selection strategy: The first anchor is found as in
single-anchor-SA; the next candidate anchor item (up to
three) is found from tests using the current anchor if its
result corresponds to the lowest non-significant absolute
test statistic and is then added to the current anchor.

iterative  AO
backward

iterative-backward-
AO

e.g., Drasgow
(1987)

Initial step: Each item is tested for DIF using all
remaining items as anchor.

Selection strategy: Iteratively, all items displaying DIF
are excluded from the anchor and the next DIF test with
the current anchor is conducted.

iterative  AO
forward

SA

iterative-forward-

AO

iterative-forward-

SA

Initial step: Each item is tested for DIF using all
remaining items as anchor.

Selection strategy: As long as the current anchor is
shorter than the number of currently presumed DIF-free
items, the next item with the lowest rank in the initial
step (AO) is added to the anchor.

Initial step: Each item is tested for DIF using every other
item as single-anchor.

Selection strategy: As long as the current anchor is
shorter than the number of currently presumed DIF-free
items, the next item with the smallest number of
significant test results in the initial step (SA) is added to
the anchor.

Table 1: Classification and nomenclature of the investigated anchor methods.
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tion and nomenclature see again Table 1) are best suited to correctly classify items with and
without DIF, an extensive simulation study is conducted. Details about the background and
motivation of our simulation study are provided in the appendix. 2000 data sets (i.e. repli-
cations) are generated from each of 77 different simulation settings. For every data set, the
item-wise Wald test (see Section 2) — based on one out of nine investigated anchor methods
— is conducted at the significance level of .05 in the free R system for statistical computing
(R Core Team 2013). A short description of the study design is given in the following para-
graphs. Parts of the simulation design were inspired by the settings used by Wang et al.
(2012), Woods (2009) and Wang (2004).

4.1. Data generating process

Each data set corresponds to the simulated responses of two groups of subjects (the reference
(ref) and the focal (foc) group) in a test with k = 40 items. We also considered different test
lengths of 20, 60, or 80 items (results not shown). In all cases the results were qualitatively
similar albeit the differences between the iterative forward and constant four anchor class are
somewhat smaller for 20 items (due to more similar anchor lengths) and larger for 60 and 80.

Person and item parameters. In the following simulation study, we have included ability
differences, since this case is often found more challenging for the methods than a situation
where no ability differences are present (see, e.g., Penfield 2001). The person parameters
are generated from a normal ability distribution with a higher mean for the reference group
6f ~ N(0,1) than for the focal group ¢ ~ N(—1,1) similar to Wang et al. (2012). For the
item parameters we chose the values that were already used by Wang et al. (2012).3

DIF items. In case of DIF, the first 15%, 30% or 45% of the items (see Section Directions and
proportions of DIF below) are chosen to display uniform DIF by setting the difference in the
item parameters of reference and focal group Apmr = B;»ef— ij-oc to +.6 or —.6 (consistent with
the intended direction of DIF). These differences have been used in previous DIF simulation
studies (Swaminathan and Rogers 1990; Finch 2005; Wang et al. 2012) and reflect a moderate
effect size measured by Raju’s area (Raju 1988; Jodoin and Gierl 2001).

IRT model. The responses in each group follow the Rasch model. They are generated in two
steps: The probability of person i solving item j is computed by inserting the corresponding
item and person parameters in the Rasch model formula 6. The binary responses are then
drawn from a binomial distribution with the resulting probabilities.

exp(@z- — ,8])

P (Ui =105, 8;) = § T+ oxp(0— 5)) (6)

4.2. Manipulated variables

Three main conditions determine the specification of the manipulated variables: One condition
under the null hypothesis where no DIF is present and two conditions under the alternative

3In addition to these item parameter values 8 = (—2.522, —1.902, —1.351, —1.092, —0.234, —0.317, 0.037,
0.268, —0.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, —1.152, —0.526, 1.104, 0.961, 1.314, —2.198, —1.621,
—0.761, —1.179, —0.610, —0.291, 0.067, 0.706, —2.713, 0.213, 0.116, 0.273, 0.840, 0.745, 1.485, —1.208, 0.189,
0.345, 0.962, 1.592), we have replicated the main results with various other item parameter settings (results
not shown). Therefore we are confident that the different behavior of the anchor methods is not limited to the
settings investigated here.
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where DIF is present.

Sample sizes. The sample sizes in reference and focal group are defined by the following pairs
(nf n'c) € {(250,250), (500,250), (500,500), (750, 500), (750, 750),..., (1500, 1500)}. Thus,
both equal and different group sizes are considered.

Directions and proportions of DIF. Under the condition of the null hypothesis (no DIF'), only
the sample sizes are varied. The two remaining conditions represent the alternative hypothesis
where DIF is present, but they differ with respect to the direction of DIF: The second condition
represents balanced DIF. Here, each DIF item favors either the reference or the focal group
but no systematic advantage for one group remains because the effects cancel out. For the
third unbalanced DIF condition a systematic disadvantage for the focal group is generated
such that every DIF item favors the reference group. In addition to the sample size, also the
proportion of DIF is manipulated including the following percentages p € {15%, 30%, 45%}.
The sample sizes, the DIF percentages and the DIF conditions (balanced and unbalanced)
were fully crossed.

4.3. Outcome variables

To allow for a comparison of the anchor methods, the classification accuracy of the DIF tests
is evaluated by means of false alarm rate and hit rate.

False alarm rate. For a single replication the false alarm rate is defined as the proportion
of DIF-free items that are (erroneously) diagnosed with DIF. The estimated false alarm rate
for each experimental setting is computed as the mean over all 2000 replications and, thus,
corresponds to the type I error rate. Similarly, the standard error is estimated as the square
root of the unbiased sample variance over all replications.

Hit rate. Analogously, for a single replication the hit rate is computed as the proportion of
DIF items that are (correctly) diagnosed with DIF. The hit rate is only defined in conditions
that include DIF items, namely in the balanced and unbalanced condition. The estimated
hit rate and the standard error are again computed as mean and standard deviation over all
2000 replications and correspond to the power of the statistical test and its variation.

Further outcome variables. Moreover, the percentage of replications where at least one item in
the anchor is a simulated DIF item (risk of contamination) is computed over all replications
of one setting. The average proportion of simulated DIF items as compared to the overall
number of anchor items (degree of contamination) is computed, too, for replications where
the anchor is contaminated. Average false alarm rates are also computed separately for the
tests based on a contaminated and for the tests based on a pure (not contaminated) anchor
to allow for a more detailed interpretation of the results.

5. Results

5.1. Null hypothesis: No DIF

In the first condition, all items were truly DIF-free. Therefore, only the false alarm rates
(proportions of DIF-free items that were diagnosed with DIF) were computed and are dis-
played in Figure C.1 in the appendix. The standard errors are reported in Table C.1 in the
appendix for equal sample sizes.
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False alarm rates. All anchor methods held the 5% level. While methods from the all-other,
the iterative backward (iterative-backward-AQO) and the iterative forward class (iterative-
forward-SA, iterative-forward-AO) together with the constant four-anchor-NC method were
near the significance level, most methods from the constant anchor class (single-anchor-AO
and single-anchor-SA; four-anchor-AO and four-anchor-SA) remained below that level. Hence,
DIF tests with an anchor method from the constant anchor class combined with the AO- and
the SA-selection — especially the constant single-anchor methods, but also the constant-four
anchors — were over-conservative.

5.2. Balanced DIF: No advantage for one group

In the balanced condition, a certain proportion of DIF items (15%, 30% or 45%) was present.
Each DIF item favored either the reference or the focal group, but the single advantages
canceled out.

False alarm rates. Figure 1 (top row) contains the false alarm rates for the balanced condition,
reported also for equal sample sizes together with the standard errors in Table C.2 in the
appendix. Most methods displayed well-controlled false alarm rates — similar to the null
condition — with the following exceptions: The constant four-anchor-NC method and the four-
anchor-SA method showed a false alarm rate that first increased but then decreased again with
growing sample size in case of 45% DIF. The same inverse u-shaped pattern occurred in case
of unbalanced DIF and will be explained in more detail in Section 7. Both constant single-
anchor methods (single-anchor-AO and -SA) as well as the four-anchor-AO method, again,
remained below the significance level. Hence, DIF tests based on the single-anchor-AO, the
single-anchor-SA and the four-anchor-AO method were over-conservative.

Hit rates. Figure 1 (bottom row) depicts the hit rates (that specify how likely true DIF
is detected) in the balanced condition, that increased monotonically with the sample size
(for standard errors see also Table C.3 in the appendix). The hit rates with the slowest
increase were from the constant single-anchor methods, but also from the constant four-anchor
methods. The methods from the constant anchor class that were combined with the AO-
selection (single-anchor-AQ, four-anchor-AQO) achieved higher hit rates than those combined
with the SA-selection (single-anchor-SA, four-anchor-SA) or the NC-selection (four-anchor-
NC). In terms of hit rates, all iterative procedures (iterative-forward-AQ, iterative-forward-SA
and iterative-backward-AQ) as well as the all-other method showed rapidly increasing hit rates
that converged to one for sample sizes above 750 in each group.

5.3. Unbalanced DIF: Advantage for the reference group

In the unbalanced condition, all items simulated with different item parameters favored the
reference group. False alarm rates for the unbalanced condition are shown in Figure 2 (top
row) and in Table C.4 in the appendix together with the standard errors.

False alarm rates. As opposed to the previous results, in this condition the majority of
the anchor methods produced inflated false alarm rates: When the proportion of DIF items
increased, the false alarm rates rose as well. Moreover, for most anchor methods, the false
alarm rates increased with growing sample size. The settings from the unbalanced condition
— especially with 30% and 45% DIF items — are now discussed in more detail in groups of
anchor classes. The all-other method yielded the highest false alarm rate in the majority of the
simulation settings. The reason for this is that the all-other method is always contaminated
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Figure 1:
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sample size varies from (250, 250) up to (1500, 1500); top row: false alarm rates; bottom row:

hit rates in the unbalanced condition.
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in situations where more than one item has DIF. On average, the mean item parameters of
the reference group were lower than the mean item parameters of the focal group. These
mean differences in the item parameters shifted the scales of focal and reference group apart
when the all-other method defined the restriction (similar to the instructive example in the
appendix). These artificial differences became significant when the sample size increased and,
thus, resulted in an inflated false alarm rate. For methods from the constant anchor class,
the selection strategy explains the false alarm rates: The strategy of selecting anchors based
on the DIF tests with all-other items as anchor yielded biased DIF test results that induced
a high false alarm rate when the sample size was large (as illustrated and discussed in more
detail regarding the impact of contamination in Section F'). Constant anchors selected by the
single-anchor strategy produced lower false alarm rates in regions of medium or large sample
sizes. Here, again, an inversely u-shaped form is visible. After a certain point, the false
alarm rates decreased again (a detailed explanation will be given in Section 7). The constant
single-anchor methods showed lower false alarm rates than the corresponding constant four-
anchor methods. For all constant methods, the single-anchor-SA method had the lowest false
alarm rate when the sample size was large. The method from the iterative backward anchor
class, which started the initial step by using the all-other method, also led to inflated false
alarm rates that rose when sample size increased. Methods from the iterative forward class
displayed heterogeneous false alarm rates. The iterative-forward-AO method led to increased
false alarm rates — similar to the constant methods with the AO-selection criterion — in the
setting with 30% or 45% DIF. The clearly best iterative method in terms of a low false alarm
rate was the new iterative-forward-SA method.

Hit rates. The hit rate in the unbalanced condition (cf. Figure 2, bottom row, and Table C.5
in the appendix) in the settings of larger proportions of DIF items was different: Generally,
the overall level of the hit rate was lower. Methods from the constant anchor class showed
the slowest increase with the sample size. These methods also had lower hit rates compared
to the methods from the iterative forward or backward class that were the only methods
that displayed rapidly increasing and high hit rates. The all-other method was between the
constant anchor methods and the iterative anchor methods. The new iterative-forward-SA
method provided the highest hit rate and a rapid rise of the hit rate with increasing sample
size. In case of 45% DIF, it displayed a much higher hit rate compared to all remaining
methods in the majority of the simulated settings. The SA-selection strategy in combination
with methods from the constant anchor class was more suitable than the AO-selection strategy
regarding the hit rates when the sample size was large. The simplified four-anchor-SA method
outperformed the originally suggested constant four-anchor method (four-anchor-NC) in terms
of higher hit rates (and lower false alarm rates). The iterative forward procedure with the
SA-selection was equal or superior to the iterative-forward-AO method over the entire range
of simulated sample sizes. When accounting for both, the false alarm rate and the hit rate,
the newly suggested iterative-forward-SA method is the only reasonable choice among the
investigated methods in our simulated settings.

6. The impact of anchor contamination

As discussed in Section 2 and in the appendix the contamination of the anchor may induce
artificial DIF and, thus, lead to a seriously inflated false alarm rate. New anchor methods are
often judged by their ability to correctly locate a completely DIF-free (i.e. pure, uncontami-
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Figure 3: Condition of unbalanced DIF with 45% DIF items favoring the reference group;
sample size ranges from (250, 250) to (1500, 1500); top-left: risk of contaminated anchors (at
least one DIF item included in the anchor); top-right: degree of contamination (proportion
of DIF items in contaminated anchors); bottom-left: false alarm rates when the anchor is
contaminated; bottom-right: false alarm rates when the anchor is pure (not contaminated).

nated) anchor (e.g., Wang et al. 2012). Thus, we will take a brief look at the simulation results
focusing on the aspect of anchor contamination for one exemplary setting of 45% unbalanced
DIF items in this section and provide a more detailed discussion in the appendix. Figure 3
(top row) depicts the proportion of replications where at least one item of the anchor was a
simulated DIF item (top-left) — this is referred to as risk of contamination — and the pro-
portion of simulated DIF items in the anchor when the anchor was contaminated (top-right)
— this is referred to as degree of contamination together with the false alarm rates (bottom
row) including only the replications that resulted in a contaminated anchor (bottom-left)
next to those including only the replications that resulted in a pure (i.e. DIF-free) anchor
(bottom-right). If none of these pure replications resulted, the respective false alarm rate is
omitted.

The results showed the following: All methods that rely on tests with all other items as anchor
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(namely the all-other, single-anchor-AQ, four-anchor-AQ, iterative-forward-AQ, iterative-backward-
AQ) displayed risks and also degrees of contamination that did not or only slightly decrease
with the sample size. The overall risk and degree level depended on the anchor length. Short
anchors, for example, displayed a lower risk of contamination compared to longer anchors.
The corresponding false alarm rates with a contaminated anchor increased, since — with in-
creasing sample size — the power of detecting artificial DIF (DIF-free items that displayed DIF
due to the chosen anchor method) increased. Those methods that are built using the SA-
selection (namely the single-anchor-SA, four-anchor-SA, iterative-forward-SA) showed risks
and degrees that decreased with the sample size (except for the degree of the single-anchor).
Their false alarm rates in contaminated replications were also lower when the sample size was
high. An interesting finding here is the result for the four-anchor-NC method: It displayed
a rapidly decreasing risk of contamination, but also a very high degree of contamination.
As a consequence, the false alarm rate in contaminated replications was very high and even
increased in the sample size. This explains the weak overall performance (see again Figure 2,
top row right). This result makes clear that it is not the risk of contamination alone that
determines the performance of the anchor method. The iterative-forward-SA method (that
performed best — in terms of a low false alarm rate together with a high hit rate — in this
condition, see again Figure 2, right) displayed a higher risk of contamination but a lower
degree of contamination compared to the four-anchor-NC method. The false alarm rate of
the iterative-forward-SA method was low, independent of whether the anchor was contami-
nated or not (see Figure 3, bottom row). Thus, we conclude that research on anchor methods
should not only concentrate on the risk of contamination, but also focus on the consequences,
which strongly depend on the degree of contamination, i.e. the proportion of DIF-items in the
contaminated anchor. The second astounding finding, which we address in the next section,
was that we observed false alarm rates exceeding the significance level, even in the case when
only pure replications without anchor contamination were regarded (see Figure 3, bottom row
right).

7. Characteristics of the anchor items inducing artificial DIF

In our simulation study, several anchor methods displayed inversely u-shaped false alarm
rates that are yet to be explained. There are two mechanisms at work here: On one hand, the
risk and the degree of contamination decrease with increasing sample size when the anchor
selection strategy works appropriately and, thus, the extent of artificial DIF decreases. On
the other hand, the power of detecting artificial DIF increases with growing sample size. One
possible explanation for the inversely u-shaped pattern is the interaction between the de-
creasing extent of artificial DIF induced by anchor contamination and the increasing power of
detecting statistically significant artificial DIF. In the beginning the false alarm rate increases
due to the increasing power for detecting artificial DIF but at some point the false alarm
rate decreases again as the risk of contamination decreases. This explanation is consistent
with the findings from Section F, when the anchor was contaminated and we provide a more
detailed discussion of the contaminated replications in the appendix. However, with this ar-
gument we cannot yet explain why the false alarm rates showed a similar pattern for pure
(uncontaminated) replications (see again Figure 3, bottom-right), where the single-anchor-
SA, the four-anchor-SA as well as the four-anchor-NC method displayed inversely u-shaped
false alarm rates. Therefore, the presence of artificial DIF induced by contamination alone
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Figure 4: Condition of unbalanced DIF with 45% DIF items favoring the reference group;
sample size ranges from (250,250) to (1500,1500); left: the scale shift when the anchor is
contaminated; right: the scale shift in case of pure anchors.

cannot explain this finding. To understand this phenomenon, it is important to note that
artificial DIF can also be caused by special characteristics of the anchor items that were lo-
cated by an anchor selection strategy. To clarify how artificial DIF is related to the observed
patterns of the false alarm rates, we conducted an additional simulation study focusing again
on the extreme condition of 45% unbalanced DIF-items. Here, we examined the difference in
the sum of the estimated anchor item parameters between focal and reference group that we
termed scale shift (because it measures how far both scales of the item parameters are shifted
apart during the construction of the common scale) for all constant four-anchor methods. To
assess reliable estimates of the scale shift, we used all items that were DIF-free by design as
anchor items to build the ideal common scale. The scale shift reflects the extent of artificial
DIF and may be caused by contamination, as discussed in the previous sections, or by special
characteristics of the anchor items in particular when the selection strategies locate anchor
items that show relatively high empirical differences in the estimated item parameters due to
random sampling fluctuation even if the located anchor items were simulated to be DIF-free.
To determine whether anchor items found by a selection strategy display this characteristic,
we included a benchmark method of four anchor items that were randomly selected from
the set of all DIF-free items. The benchmark method, thus, represents the ideal four-anchor
method that does not select items with high differences more often than others. The results,
separated for contaminated and pure replications, are depicted in Figure 4. Our second argu-
ment now becomes important in the case of pure anchors, that are discussed in more detail
in this section: The scale shift for the benchmark method of randomly chosen DIF-free an-
chor items (Figure 4, right) fluctuated around zero and displayed no systematic shift in one
direction. However, the scale shift of all remaining constant four-anchor methods was nega-
tive. This represents the fact that the supposedly pure items chosen by an anchor selection
strategy displayed different characteristics than randomly chosen pure anchor items. From
all items that were “pure” by definition (i.e. were drawn from distributions with no parame-
ter difference) the anchor selection strategies selected not the ones with the lowest empirical
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difference (due to random sampling), as one might hope, but those with a large empirical
difference which induced artificial DIF for the other items. As can be seen from Figure 4
(right), the absolute scale shift for the four-anchor methods reduced with increasing sample
size. In regions of large sample sizes, the absolute scale shift was directly related to the false
alarm rate: When the absolute scale shift was high (as was the case for the four-anchor-AO
method), the false alarm rate was high as well (Figure 3, bottom-right). In regions of smaller
sample sizes, the scale shift of all four-anchor methods was high, but the false alarm rates
were low at the beginning and then increased with growing sample size. When the scale shift
decreased with growing sample size (e.g., for the four-anchor-SA method), the corresponding
false alarm rate decreased as well and resulted in an inversely u-shaped pattern (see again
Figure 3, bottom-right). Here, the interaction between the extent of artificial DIF — now
induced by large empirical differences in the pure anchor items — and the power of detecting
artificial DIF was visible that explained the false alarm rates.

8. Summary and discussion

The assessment of differential item functioning for the Rasch model based on the Wald test was
investigated by means of hit and false alarm rates. Under the null hypothesis, all methods from
the iterative forward and backward class as well as the all-other method held the significance
level, while methods from the constant anchor class remained below that level. When DIF
was balanced, the all-other method and also methods from the iterative forward and backward
class yielded high hit rates while simultaneously exhausting the significance level. As expected,
the all-other selection strategy outperformed the single-anchor selection strategy. In case
of unbalanced DIF, the SA-selection procedure was superior to the AO-selection strategy
when the sample size was large. The constant four-anchor class was not only combined
with the AO-selection and the SA-selection strategy, but also with the original NC-selection.
Even though the four-anchor-NC method led to a low risk of contamination (see Section F),
it was outperformed by the four-anchor-SA method, that yielded lower false alarm rates
and higher hit rates. In this unbalanced case, the newly suggested iterative-forward-SA
method yielded the highest hit rate and a low false alarm rate and was, thus, the best
performing anchor method. Based on these results, a careful consideration of the employed
anchor method is necessary to avoid high misclassification rates and doubtful test results.
Note, however, that the Rasch model, that was used for analyzing the data, was also the
truly underlying data generating process. This assumption should be critically assessed in
practical applications and future research should further investigate the separability of DIF
and model misspecification. When no reliable prior knowledge about the DIF situation exists,
as will be the case in most real data analysis settings (as opposed to simulation analysis
where the true DIF pattern is known), we thus recommend to use the iterative-forward-SA
method. When the sample size was large enough (above 1000 observations in each group in
our simulated settings), the false alarm rates were low in any condition even if the anchor
was contaminated. Hit rates rapidly grew with the sample size and converged to one. The
iterative-forward-SA method outperformed the iterative-backward-AQ, iterative-forward-AQ,
the all-other as well as anchor methods from the constant anchor class by yielding a lower
false alarm rate together with a higher hit rate. There are several reasons that explain the
superior performance of the iterative-forward-SA method. Firstly, the method has a head
start compared to the methods that rely on DIF tests using the all-other items as anchor
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(e.g., the classical iterative procedures, such as the iterative-backward-AQO). While the latter
start with a criterion that is severely biased when DIF is unbalanced, the iterative-forward-
SA method does not require that DIF effects almost cancel out (for a discussion see Wang
2004). Secondly, the SA-selection strategy combined with the iterative forward anchor class
also performed well in case of balanced DIF. While the AO-selection strategy performed
better than the SA-selection strategy when it was combined with the methods from the
constant anchor class, the advantage in combination with the iterative forward class appeared
negligible. Thirdly, our study showed that the consequences of contamination depend on the
proportion of contaminated items rather than on the risk of contamination itself. Therefore,
the iterative-forward-SA method yielded better results in DIF analysis even though the anchor
was long and, thus, often contaminated. The risk of contamination decreased with increasing
sample size and, beyond that, the proportion of DIF items in the contaminated anchor (the
degree of contamination) decreased. Fourthly, the iterative forward anchor class adds items
to the anchor as long as the number of anchor items is smaller than the set of presumed
DIF-free items. If the sample size is large enough, this leads to the desirable property, that
it produces a longer anchor when the proportion of DIF items is low and a shorter anchor
if the proportion of DIF items is high, similar to the iterative backward method.* Another
astounding finding of our simulations was that anchor items located by an anchor selection
strategy displayed different characteristics compared to randomly chosen DIF-free items and
may be exactly those items that again induce artificial DIF. Including more anchor items
(than, e.g., four anchor items) reduces the artificial scale shift that is induced by anchor items
with empirical group differences and, thus, can also occur when the anchor is (by definition)
pure. The reason for this is that a longer anchor, that contains some items that induce
artificial DIF but also several items that do not, shifts the scales of the item parameters
less strongly than a shorter anchor, where the proportion of items inducing artificial DIF is
higher. The simulation study presented here was limited to DIF analysis in the Rasch model
using the Wald test. Thus, future research (the interested reader is referred to the appendix)
may investigate the usefulness of the iterative-forward-SA method for other IRT models and
combine it with other DIF detection methods.
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A. An instructive example

The data set from a general knowledge quiz was conducted by the weekly German news
magazine SPIEGEL in 2009. A thorough discussion and analysis of the original data set are
provided in Trepte and Verbeet (2010) including a global DIF analysis by means of model-
based recursive partitioning by Strobl, Kopf, and Zeileis (2010). From about 700,000 test-
takers that answered each a total of 45 items from different domains, we select a subsample
of 9,442 test-takers (that obtained their A-levels in Germany) and four items from politics
(listed below together with the correct answers) for the illustration of the anchor problem:

Item 1 Who determines the rules of action in politics according to the German
Constitution? (The Bundeskanzler.)

Item 2 What is the role of the second vote in the elections for the German Bundestag?
(It governs the seating in the German Bundestag.)

Item 3 How many people were killed by the RAF? (33)

Item 4 Indicate the location of Hessen on the German map.

As an exemplary illustration, let us suppose we want to test for DIF in the first item between
the focal (foc) group of the test-takers that obtained their A-levels in the German federal
state Hessen and the reference (ref) group of all remaining test-takers. Figure A.1 displays
three different restrictions: The second item as constant single-anchor, the fourth item as
constant single-anchor and all other items (item 2 to item 4) as anchor. The points represent
the estimated item parameters from the reference (light points) and the focal group (dark
points). The rectangles surround the anchor item(s).

In Figure A.1 (left), item 2 is used as constant single-anchor and, thus, both estimated
item parameters are set to zero. The negligible difference in the item parameters of item 1,
that we are currently interested in, suggests no DIF in this item. The item-wise Wald test
(see equation 5 in the main article) for item 1 does not display statistically significant DIF
(t = —.968 with the corresponding p-value of .333). As a result, item 1 is classified as DIF-
free. To understand the DIF test results for item 1 in the next scenarios, it is also important
to note that the large difference in item 4 implies DIF in this item. Since item 4 was the
question to indicate the location of Hessen on the German map, it is plausible that this item
4 is a true DIF item since it was easier for test-takers that obtained their A-levels in Hessen.

In the next scenario in Figure A.1 (middle), item 4 (that we just found plausible to have true
DIF) is used as a constant single-anchor. Compared to the first scenario, all item parameters
are now shifted upwards by the estimated difficulties of item 4 and artificial differences occur
for item 1, 2 and 3. This shows that the anchor items should be DIF-free to avoid the artificial
differences, which are termed artificial DIF by Andrich and Hagquist (2012). The artificial
DIF for item 1, that we are currently interested in, is statistically significant (¢t = —7.406 with
the corresponding p-value < .001). Hence, item 1 is classified as a DIF item.

In the last scenario in Figure A.1 (right), all other items — except the currently studied item
1 — are used as anchor items. Compared to the second scenario, the scales are shifted apart
less strongly since the scale shift is reduced from the estimated difficulties of the DIF item
4 to the average over the estimated difficulties of item 2, 3 and 4 (including the apparently
DIF-free items 2 and 3) as visible by the shorter arrows. However, the statistical test still
classifies item 1 as a DIF item (¢t = —5.846 with the corresponding p-value < .001). This
example illustrates the major impact of the anchor method on the results of the DIF analysis,
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Figure A.1: Different restrictions placed on the item parameters that are estimated using

the Rasch model in each group.

since — depending on the anchor set — three different test statistics result in the DIF tests for
item 1.

B. Background and motivation of the simulation study

In this section, the background of our simulation study — that investigates the trade-off
between the false alarm rate and the hit rate of DIF tests using the anchor methods introduced
in Section 3 in our main article — is described. The results are used to develop guidelines which
anchor methods should be used for DIF analysis in the Rasch model.

If no DIF is present in the test, we expect all anchor methods to yield well-controlled false
alarm rates, since no DIF items and, therefore, no risk of contamination exists (Wang and Yeh
2003; Stark, Chernyshenko, and Drasgow 2006; Woods 2009; Gonzalez-Betanzos and Abad
2012).

If DIF is balanced, i.e. the DIF items favor either the reference or the focal group and no
systematic disadvantage exists, previous simulation studies showed that the all-other class
yielded a well-controlled false alarm rate and a high hit rate (Wang and Yeh 2003; Wang
2004). However, if DIF is unbalanced i.e. all DIF items are simulated to favor one group, an
inflated false alarm rate for the all-other method was reported (Wang and Yeh 2003; Wang
2004).

In accordance with Thissen et al. (1988) and Woods (2009), we anticipate the constant anchor
class to show an increase in the false alarm and the hit rate when the anchor length rises from
one to four items and the proportion of DIF items is high. Wang et al. (2012) also found that
four anchor items combined with the IRTLRDIF procedure (Thissen 2001) yielded low power
rates as might also be the case in our simulation with the Wald test.

Gonzdlez-Betanzos and Abad (2012) compared an iterative backward two-step procedure
based on the AO-selection strategy to specific constant single-anchors, to a purification pro-
cedure based on a DIF-free constant single anchor and to the all-other method. The constant
single-anchor items were selected from the set of known a priori DIF-free items. The itera-
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tive backward two-step procedure showed slightly inflated false alarm rates. Due to the fact
that one additional purification step improved the test results, the authors assumed improve-
ments when further purification steps are added as we have implemented in our main article.
Accordingly, we expect the iterative backward anchor class to achieve high hit rates as they
allow for a long anchor, but at the expense of an inflated false alarm rate especially in settings
where the proportion of DIF items is high and DIF is unbalanced.

Little information is available on how well the anchor selection strategies perform, as Wang
and Yeh (2003), Wang (2004) and Thissen et al. (1988) included only DIF-free items in the
constant anchor class. This approach is only possible in simulation studies, however, where
it is known by design which items are DIF-free. In practice, on the other hand, a set of
DIF-free items prior to DIF analysis is usually not available (Gonzélez-Betanzos and Abad
2012). Including only DIF-free items avoids the risk of contamination (for the consequences of
contamination see Section The anchor process for the Rasch model in our main article and the
empirical example in this appendix) and, thus, leads to an advantage for the methods from
the constant anchor class. However, in order to compare the anchor classes under realistic
conditions where it is not known a priori which items are DIF-free, the methods from the
constant anchor class should be investigated together with an anchor selection strategy.

Woods (2009) investigated the AO-selection strategy to locate a set of constant anchor items
and found results suitable for DIF analysis and superior to the all-other method. However,
Wang et al. (2012) investigated the constant anchor method based on the selection of four
anchor items using the AO-selection strategy (here referred to as the four-anchor-AO method)
and found that the anchors were often contaminated and showed an inflated false alarm rate
when DIF was unbalanced and no additional purification step was used. Therefore, we expect
the four-anchor-AO method to perform well only in the condition of balanced DIF and poorly
in the condition where DIF is unbalanced (Wang and Yeh 2003; Wang 2004; Shih and Wang
2009; Wang et al. 2012).

The SA-selection strategy proposed by Wang (2004) is (to our knowledge) implemented and
combined with several anchor classes in our main article for the first time. Since the SA-
selection strategy relies on DIF tests using every item as single anchor, we anticipate the
SA-selection strategy to outperform the AO-selection strategy if the sample size is large and
DIF is unbalanced. When DIF is balanced, we expect the AO-selection strategy to be superior.

The newly suggested iterative forward class builds the anchor in a step-by-step forward pro-
cedure. In comparison with the iterative backward method, we expect the forward procedure
to be superior when the SA-selection strategy is used and DIF is unbalanced since the initial
step of the iterative backward procedure is built on biased test results. In comparison with
methods from the constant anchor class, we anticipate higher hit rates because the anchor of
the iterative forward procedure grows as long as the current anchor is shorter than the number
of currently presumed DIF-free items and should, thus, include more than four items. As a
drawback, we also expect higher false alarm rates since the risk of contamination increases
with the anchor length. Furthermore, we anticipate the methods from the iterative forward
class to show lower hit rates than the all-other method in the balanced case, because the
latter uses all items — except the studied item — as anchor.
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C. Additional results of our simulation study

In this section, we provide additional results from our simulation study by means of additional
figures, tables and summaries.

Null hypothesis: No DIF

Since all items were truly DIF-free in the first condition, only the false alarm rate (proportion
of DIF-free items that were diagnosed with DIF) was computed.

Fualse alarm rates

The estimated false alarm rates are depicted in Figure C.1 and (only for equal sample sizes)
also reported together with their standard errors in Table C.1.

As shown in Figure C.1, all anchor methods held the 5% level. While methods from the
all-other, the iterative backward (iterative-backward-AO) and the iterative forward class
(iterative-forward-SA, iterative-forward-AQO) together with the constant four-anchor-NC method
were near the significance level of 5%, most methods from the constant anchor class (constant
single-anchors: single-anchor-AQO and single-anchor-SA; constant four-anchors: four-anchor-
AO and four-anchor-SA) remained below that level. The constant single-anchors — that
consist of an anchor with the constant length of only one item — displayed false alarm rates
not exceeding 0.01, whereas the constant four-anchors displayed slightly higher false alarm
rates (approximately 0.03 for the constant four-anchor-AO as well as for the four-anchor-SA
method).

Hence, DIF tests with an anchor method from the constant anchor class combined with
the AO- and the SA-selection — especially the constant single-anchor methods — were over-

conservative.

all- single- four- iterativeiterativesingle- four- four- iterative-
other anchor- anchor- forward-backw.- anchor- anchor- anchor- forward-
AO AO AO AO SA SA NC SA

false alarm
rate

no DIF
250, 250 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05
(0.04) (0.01) (0.03) (0.04) (0.03) (0.00) (0.03) (0.04) (0.04)
500, 500 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05
(0.03) (0.01) (0.02) (0.03) (0.03) (0.00) (0.03) (0.04) (0.03)
750, 750 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05
(0.03) (0.01) (0.03) (0.03) (0.03) (0.00) (0.03) (0.04) (0.04)
1000, 1000 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05
(0.03) (0.01) (0.02) (0.03) (0.03) (0.00) (0.03) (0.04) (0.03)
1250, 1250 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05
(0.04) (0.01) (0.03) (0.04) (0.04) (0.00) (0.03) (0.04) (0.04)
1500, 1500 0.05 0.01 0.03 0.05 0.05 0.00 0.03 0.05 0.05
(0.04) (0.01) (0.03) (0.04) (0.03) (0.00) (0.03) (0.04) (0.04)

Table C.1: False alarm rates and standard errors under the null hypothesis (no DIF) with
equal sample sizes in reference and focal group.
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Figure C.1: False alarm rates under the null hypothesis of no DIF.

Balanced DIF: No advantage for one group

The false alarm rates and hit rates for the balanced condition are presented in Figure 1 in
our main article together with a detailed interpretation of the results. In addition, here, the
false alarm rates are listed together with the standard errors only for equal sample sizes in
Table C.2. The hit rates are included in Table C.3.

Summary

In the balanced condition, the AO-selection strategy outperformed the SA-selection by yield-
ing higher hit rates as expected. The difference was large for methods from the constant
anchor class, but negligible for methods from the iterative forward anchor class.

All anchor methods showed a well-controlled false alarm rate, except the constant four-anchor-
SA and the four-anchor-NC method. All iterative methods (from the forward and backward
class) and the all-other method displayed the most rapidly rising hit rates. The newly sug-
gested iterative-forward-AO and iterative-forward-SA method enabled a high rate of correctly
classified DIF items and simultaneously maintained the significance level in the balanced con-

dition.

Unbalanced DIF: Advantage for the reference group

The false alarm rates and hit rates for the unbalanced DIF condition are depicted in Figure 2

in our main article. The corresponding section provides a detailed interpretation of the results.
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all- single- four- iterativeiterativesingle- four- four- iterative-
other anchor- anchor- forward-backw.- anchor- anchor- anchor- forward-
AO AO AO AO SA SA NC SA

false alarm
rate

0.15
250,250 0.05 001 003 005 0.05 000 003 005 005
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.03) (0.05) (0.04)
500,500 0.05 0.01 003 005 0.05 000 004 008 005
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.07) (0.04)
750,750  0.05 0.01 003 005 0.05 0.0l 004 010 0.5
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.08) (0.04)
1000, 1000 0.05 0.01  0.03 0.05 005 000 0.04 0.08 0.0
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.07) (0.04)
1250, 1250 0.05 0.01  0.03 0.05 005 0.00 003 0.06 0.05
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.03) (0.06) (0.04)
1500, 1500 0.05 0.01  0.03 0.05 0.05 000 0.03 0.06 0.05
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.03) (0.05) (0.04)

0.30
250,250  0.05 0.01 003 005 0.05 000 003 005 005
(0.04) (0.02) (0.03) (0.04) (0.04) (0.01) (0.04) (0.06) (0.04)
500,500 0.05 001 003 005 0.05 00l 005 011 0.5
(0.04) (0.01) (0.03) (0.04) (0.04) (0.02) (0.05) (0.10) (0.04)
750,750  0.05 001 003 005 0.05 002 006 014 0.5
(0.04) (0.01) (0.03) (0.04) (0.04) (0.03) (0.05) (0.11) (0.04)
1000, 1000 0.05 0.01  0.03 0.05 005 001 004 012 0.05
(0.04) (0.02) (0.03) (0.04) (0.04) (0.03) (0.05) (0.10) (0.04)
1250, 1250 0.05 0.01  0.03 0.05 005 001 004 0.08 0.05
(0.04) (0.01) (0.03) (0.04) (0.04) (0.02) (0.04) (0.08) (0.04)
1500, 1500 0.05 0.01  0.03 0.05 0.05 0.00 0.03 007 0.05
(0.04) (0.01) (0.03) (0.04) (0.04) (0.01) (0.04) (0.07) (0.04)

0.45
250,250 0.05 0.01 003 0.05 0.05 000 003 006 0.05
(0.05) (0.02) (0.03) (0.05) (0.05) (0.01) (0.04) (0.07) (0.05)
500,500 0.05 0.01 0.03 0.05 005 002 006 017 0.6
(0.05) (0.02) (0.04) (0.05) (0.05) (0.04) (0.07) (0.16) (0.05)
750,750 0.05 0.0l 0.03 005 005 005 009 021 0.6
(0.05) (0.02) (0.03) (0.05) (0.05) (0.06) (0.08) (0.20) (0.05)
1000, 1000 0.05 0.00 0.03 0.05 005 004 007 017 0.0
(0.05) (0.01) (0.03) (0.05) (0.05) (0.06) (0.07) (0.19) (0.05)
1250, 1250 0.05 0.01  0.03 0.05 005 002 005 011 0.0
(0.05) (0.02) (0.03) (0.05) (0.05) (0.05) (0.05) (0.13) (0.05)
1500, 1500 0.05 0.01  0.03 0.05 0.05 001 004 0.08 0.05
(0.05) (0.02) (0.03) (0.05) (0.05) (0.02) (0.04) (0.09) (0.05)

Table C.2: False alarm rates and standard errors in the balanced condition with equal sample
sizes in reference and focal group.

Here, we give a short summary. The false alarm rates are listed together with the standard

errors only for equal sample sizes in Table C.4, the hit rates in Table C.5.

Summary

In the unbalanced condition, the SA-selection strategy was superior to the AO-selection strat-

egy when the sample size and the DIF proportion were high as expected, since it not only
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hit rate all- single- four- iterativeiterativesingle- four- four- iterative-
other anchor- anchor- forward-backw.- anchor- anchor- anchor- forward-
AO AO AO AO SA SA NC SA
0.15

250,250 0.75 044 067 074 0.73 022 064 066 0.74
(0.17) (0.22) (0.19) (0.17) (0.17) (0.15) (0.19) (0.18) (0.17)
500,500 0.95 0.81 092 094 094 054 087 086 0.94
(0.09) (0.17) (0.11) (0.09) (0.09) (0.15) (0.13) (0.13) (0.09)
750,750  0.99 095 098 099 099 074 096 094 0.9
(0.04) (0.09) (0.05) (0.05) (0.05) (0.16) (0.08) (0.09) (0.05)
1000, 1000 1.00 0.99 0.99 1.00 1.00 0.88 099 098 1.00
(0.02) (0.05) (0.03) (0.02) (0.02) (0.13) (0.05) (0.05) (0.03)
1250, 1250 1.00 1.00 1.00 1.00 1.00 095 1.00 1.00 1.00
(0.01) (0.03) (0.01) (0.01) (0.01) (0.09) (0.03) (0.03) (0.01)
1500, 1500 1.00 1.00 1.00 1.00 1.00 098 1.00 1.00 1.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.06) (0.02) (0.02) (0.01)

0.30
250,250 0.76 043 067 075 074 024 063 065 0.74
(0.13) (0.16) (0.14) (0.12) (0.12) (0.11) (0.13) (0.13) (0.12)
500,500 0.96 082 093 095 095 055 086 084 095
(0.06) (0.12) (0.07) (0.06) (0.06) (0.09) (0.10) (0.12) (0.06)
750,750  0.99 095 099 099 099 071 095 092 0.99
(0.02) (0.06) (0.03) (0.03) (0.03) (0.12) (0.07) (0.09) (0.03)
1000, 1000 1.00 0.99 1.00 1.00 1.00 0.85 099 098  1.00
(0.01) (0.03) (0.02) (0.01) (0.01) (0.12) (0.03) (0.05) (0.01)
1250, 1250 1.00 1.00 100 1.00 1.00 094 1.00 1.00 1.00
(0.01) (0.02) (0.01) (0.01) (0.01) (0.08) (0.02) (0.02) (0.01)
1500, 1500 1.00 1.00 1.00 1.00 1.00 098 1.00 1.00 1.00
(0.00) (0.01) (0.00) (0.00) (0.00) (0.04) (0.01) (0.01) (0.00)

0.45
250,250 0.71 042 063 0.70 0.68 026 059 061  0.69
(0.10) (0.13) (0.11) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)
500,500 0.92 079 0.89 091 090 054 082 077 0.90
(0.06) (0.10) (0.07) (0.06) (0.07) (0.08) (0.10) (0.12) (0.07)
750,750  0.98 093 097 097 097 067 090 086 0.7
(0.04) (0.06) (0.04) (0.04) (0.04) (0.11) (0.09) (0.12) (0.04)
1000, 1000 0.99  0.97 0.99 099 099 081 096 094 0.99
(0.02) (0.04) (0.03) (0.02) (0.03) (0.13) (0.05) (0.09) (0.03)
1250, 1250 1.00 0.99 1.00 1.00 1.00 091 099 098 1.00
(0.01) (0.02) (0.02) (0.01) (0.02) (0.09) (0.03) (0.05) (0.02)
1500, 1500 1.00 1.00 1.00 1.00 1.00 097 099 099  1.00
(0.01) (0.02) (0.01) (0.01) (0.01) (0.05) (0.02) (0.03) (0.01)

Table C.3: Hit rates and standard errors in the balanced condition with equal sample sizes
in reference and focal group.

allowed a higher hit rate but it also displayed a lower false alarm rate.

In the condition of unbalanced DIF, the false alarm rates were no longer well-controlled.
When the DIF proportion was high, only the single-anchor-SA, the four-anchor-SA and the
iterative-forward-SA method had low false alarm rates in regions of large sample sizes. Both

constant single-anchor methods yielded low false alarm rates — but also low hit rates — when
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all- single- four- iterativeiterativesingle- four- four- iterative-
other anchor- anchor- forward-backw.- anchor- anchor- anchor- forward-
AO AO AO AO SA SA NC SA

false alarm
rate

0.15
250,250 0.07 0.0l 004 0.06 006 00l 007 010 0.6
(0.04) (0.02) (0.03) (0.04) (0.04) (0.01) (0.05) (0.08) (0.04)
500,500 0.09 001 005 006 0.05 002 009 013 0.05
(0.04) (0.02) (0.04) (0.04) (0.04) (0.03) (0.05) (0.10) (0.04)
750,750 0.11  0.02 006 0.05 0.05 002 006 013 0.5
(0.05) (0.02) (0.04) (0.04) (0.04) (0.03) (0.05) (0.10) (0.04)
1000, 1000 0.13  0.02 0.08 0.05 005 001 004 010 0.05
(0.05) (0.03) (0.04) (0.04) (0.04) (0.02) (0.04) (0.09) (0.04)
1250, 1250 0.15 0.03 0.09 0.05 005 000 0.03 007 0.05
(0.05) (0.03) (0.05) (0.04) (0.04) (0.01) (0.03) (0.07) (0.04)
1500, 1500 0.17 0.03 0.10 0.5 0.06 0.00 0.03 0.05 0.05
(0.05) (0.03) (0.05) (0.04) (0.04) (0.01) (0.03) (0.05) (0.04)

0.30
250,250 0.13 0.02 0.08 0.09 008 001 010 0.14 0.9
(0.06) (0.03) (0.05) (0.06) (0.06) (0.03) (0.06) (0.11) (0.06)
500,500 021 004 013 0.09 008 004 015 021 0.07
(0.06) (0.04) (0.06) (0.06) (0.06) (0.05) (0.08) (0.16) (0.06)
750,750 029  0.07 017 0.09 0.08 005 013 021 0.05
(0.07) (0.05) (0.07) (0.07) (0.06) (0.06) (0.08) (0.18) (0.05)
1000, 1000 0.36  0.09 020 0.08 0.09 004 008 017 0.0
(0.07) (0.07) (0.09) (0.06) (0.06) (0.07) (0.07) (0.15) (0.04)
1250, 1250 0.43 0.12 023 008 0.0 0.02 004 011 0.05
(0.07) (0.08) (0.10) (0.06) (0.06) (0.05) (0.05) (0.12) (0.04)
1500, 1500 0.50 0.14 0.24 007 0.11 000 0.03 0.07 0.05
(0.07) (0.09) (0.11) (0.06) (0.07) (0.02) (0.04) (0.08) (0.04)

0.45
250,250 024 005 016 024 023 002 017 022 021
(0.08) (0.05) (0.08) (0.11) (0.13) (0.04) (0.09) (0.15) (0.12)
500,500 041 0.2 029 037 034 009 030 038 026
(0.09) (0.09) (0.11) (0.14) (0.18) (0.09) (0.13) (0.24) (0.15)
750,750 0.56  0.19 0.39 048 040 016 034 046 020
(0.09) (0.13) (0.15) (0.15) (0.21) (0.15) (0.16) (0.31) (0.16)
1000, 1000 0.68  0.26  0.47 056 045 0.19 025 044 0.1
(0.08) (0.19) (0.18) (0.16) (0.23) (0.20) (0.18) (0.36) (0.12)
1250, 1250 0.77 0.32 054 0.66 052 0.5 013 031 0.07
(0.07) (0.25) (0.21) (0.16) (0.24) (0.22) (0.15) (0.36) (0.08)
1500, 1500 0.83 0.38 059 0.73 058 007 006 0.16 0.06
(0.07) (0.30) (0.23) (0.16) (0.25) (0.17) (0.09) (0.26) (0.07)

Table C.4: False alarm rates and standard errors in the unbalanced condition with equal
sample sizes in reference and focal group.

the sample size was small.

All methods from the constant anchor class, especially in regions of small sample sizes, showed
poor hit rates. The highest hit rate — in all settings from the unbalanced condition — occurred

for the newly proposed iterative-forward-SA method.
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hit rate all- single- four- iterativeiterativesingle- four- four- iterative-
other anchor- anchor- forward-backw.- anchor- anchor- anchor- forward-
AO AO AO AO SA SA NC SA
0.15

250,250 0.64 029 053 070 0.67 007 040 040 0.71
(0.19) (0.19) (0.20) (0.20) (0.19) (0.11) (0.20) (0.23) (0.20)
500,500 0.91 065 085 095 091 028 074 071 0.95
(0.11) (0.21) (0.14) (0.09) (0.10) (0.23) (0.19) (0.22) (0.09)
750,750  0.98  0.87 0.96 0.99 098 059 094 091  0.99
(0.06) (0.14) (0.08) (0.04) (0.06) (0.28) (0.10) (0.14) (0.03)
1000, 1000 1.00  0.95 099 1.00 1.00 0.82 099 098  1.00
(0.03) (0.09) (0.04) (0.01) (0.03) (0.23) (0.04) (0.07) (0.01)
1250, 1250 1.00 0.99 1.00 1.00 1.00 095 1.00 1.00 1.00
(0.01) (0.05) (0.02) (0.01) (0.01) (0.12) (0.02) (0.03) (0.01)
1500, 1500 1.00 1.00 1.00 1.00 1.00 099 1.00 1.00 1.00
(0.01) (0.02) (0.01) (0.00) (0.01) (0.04) (0.01) (0.01) (0.00)

0.30
250,250 0.47 0.6 036 056 055 005 029 030 058
(0.13) (0.11) (0.14) (0.18) (0.18) (0.07) (0.14) (0.18) (0.18)
500,500 0.76 040 0.68 0.89 0.85 021 061 058 0.92
(0.11) (0.16) (0.13) (0.10) (0.09) (0.17) (0.17) (0.22) (0.09)
750,750 0.90 0.63 0.86 0.98 093 045 087 082 0.99
(0.08) (0.17) (0.10) (0.04) (0.05) (0.24) (0.13) (0.20) (0.03)
1000, 1000 0.96  0.78 0.95 1.00 097 071 097 095 1.00
(0.05) (0.15) (0.06) (0.02) (0.04) (0.24) (0.06) (0.12) (0.01)
1250, 1250 0.99 0.90 0.98 1.00 099 090 1.00 0.99  1.00
(0.03) (0.10) (0.04) (0.01) (0.03) (0.17) (0.02) (0.06) (0.00)
1500, 1500 1.00 0.95 1.00 1.00 1.00 098 1.00 1.00 1.00
(0.02) (0.08) (0.02) (0.00) (0.02) (0.07) (0.01) (0.01) (0.00)

0.45
250,250 0.28 0.07 019 028 027 003 017 019 0.32
(0.09) (0.06) (0.09) (0.13) (0.14) (0.04) (0.10) (0.14) (0.15)
500,500 050 0.19 041 053 051 011 037 037 063
(0.10) (0.12) (0.13) (0.15) (0.19) (0.12) (0.16) (0.24) (0.18)
750,750 0.67 035 0.61 072 070 025 061 053 087
(0.09) (0.18) (0.16) (0.14) (0.19) (0.23) (0.21) (0.32) (0.13)
1000, 1000 0.78 049 0.75 0.83 079 045 085 0.68 0.96
(0.08) (0.25) (0.16) (0.12) (0.18) (0.33) (0.16) (0.35) (0.05)
1250, 1250 0.85 0.61 0.84 088 081 068 096 082 098
(0.07) (0.29) (0.15) (0.10) (0.22) (0.36) (0.08) (0.32) (0.03)
1500, 1500 0.90 0.68 0.90 092 082 087 099 093  0.99
(0.06) (0.32) (0.12) (0.09) (0.25) (0.26) (0.03) (0.22) (0.02)

Table C.5: Hit rates and standard errors in the unbalanced condition with equal sample sizes
in reference and focal group.
D. The impact of anchor contamination

Section 6 in the main article already provided a brief focus on the aspect of anchor contam-
ination. Here, we want to provide a more detailed discussion. As already stated, Figure 3

(top row) in our main article depicts the proportion of replications where at least one item of
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the anchor was a simulated DIF item (top-left) — this is referred to as risk of contamination —
and the proportion of simulated DIF items in the anchor when the anchor was contaminated
(top-right) — this is referred to as degree of contamination together with the false alarm rates
(bottom row) including only the replications that resulted in a contaminated anchor (bottom-
left) next to those including only the replications that resulted in a pure i.e. DIF-free anchor
(bottom-right). If none of these pure replications resulted, the respective false alarm rate is

omitted.

The results showed the following: For the all-other method all items functioned as anchor
items. Correspondingly, the risk of contamination was 100% and the degree was 45% as
simulated. With increasing sample size, the power of detecting artificial DIF (DIF-free items
that displayed DIF due to the employed anchor method) increased and, thus, the false alarm

rate rose.

Regarding methods from the constant anchor class, the risk of contaminated anchors decreased
when the sample size increased for the SA- or the NC-selection strategy, while the AO-selection
strategy showed a relatively constant risk of contaminated anchors (observed maximum: four-
anchor-AO: 91%, single-anchor-AO method: 40%). If the constant single-anchor items were
contaminated, inevitably, the false alarm rates exploded when the sample size was large
enough to detect significant artificial DIF (observed maximum: single-anchor-AO: 0.72, single-
anchor-SA: 0.52).

Surprisingly, there was a large gap between the degree of contamination for the constant
four-anchor methods: When the AO-strategy or the SA-strategy were chosen and the sample
size was large, on average about one to one and a half out of four anchor items had DIF. In
contrast to this, about three out of four anchor items had DIF for the four-anchor-NC method.
In contaminated situations, consequently, the four-anchor-NC method displayed a larger false
alarm rate (observed maximum: 0.83) than the four-anchor-AO (observed maximum: 0.65)
or the four-anchor-SA method (observed maximum: 0.37). Therefore, the four-anchor-NC
method displayed larger false alarm rates compared to the four-anchor-SA method over all
unbalanced conditions with 45% DIF items (see again Figure 2 in our main article, top row),
even though it had a lower risk of contamination (see again Figure 3 in our main article, top-
left). Hence, the degree of contamination was important for the results of the DIF assessment.
Note, however, that even if the anchor was pure, the false alarm rates of the constant anchor
methods exceeded the significance level. To clarify this fact, we will present an additional

simulation study in the next section.

The longer iterative anchors were more often contaminated, as expected (see Figure 3 in our
main article). For the iterative-forward-AO method even all replications were contaminated.
The iterative-forward-SA and the iterative-backward-AO method yielded a risk of contam-
ination that decreased with the sample size (observed minimum: 0.42 and 0.89). In case

of contaminated anchors, the methods from the iterative forward and backward class also
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produced inflated false alarm rates. When the sample size in each group exceeded 750, the

iterative-forward-SA method definitely had the lowest false alarm rate.

Summary

Our findings clarify that it is not the risk of contamination alone that explains the inflated
false alarm rates. The best method — in terms of a low false alarm rate together with a
high hit rate — in the unbalanced condition when the sample size was large was the iterative-
forward-SA method even if it had a high risk of contamination. Therefore, the consequences
of contamination depended on the degree of contamination which was low for this method
due to the suitable SA-selection strategy. Research on anchor methods should, thus, not only
concentrate on the risk of contamination, but also focus on the consequences, which strongly

depend on the proportion of contaminated items in the anchor.

E. Characteristics of the anchor items inducing artificial DIF

In this appendix, we provide a more detailed description of the finding from our simulation
study that several anchor methods — especially the four-anchor-SA and the four-anchor-NC

method — displayed inversely u-shaped false alarm rates.

Our explanation — that the inversely u-shaped pattern results from an interaction between the
decreasing extent of artificial DIF induced by anchor contamination and the increasing power
of detecting statistically significant artificial DIF — is consistent with the findings from the
previous section and with Section 6 of our main article, where the anchor was contaminated:
The four-anchor-SA method, for example, displayed a degree of contamination that decreased
with sample size (see again Figure 3 in the main article, top-right) and an inversely u-shaped
false alarm rate when the anchor was contaminated (see again Figure 3 in the main article,
bottom-left).

This situation of contaminated anchors is here addressed in more detail for the constant four-
anchor methods (the four-anchor-SA and the four-anchor-NC method that displayed inversely
u-shaped patterns as well as the four-anchor-AO method that displayed an increasing false
alarm rate, see again Figure 2 in the main article, top-right). In case of contaminated anchors
(Figure 4 in the main article, left), the four-anchor methods displayed negative scale shifts.
Even though the absolute scale shifts were almost constant over the sample size in regions
of small to medium sample sizes for the four-anchor-AO and four-anchor-NC or even slightly
decreasing for the four-anchor-SA method, the false alarm rates rose with growing sample
size in the respective range of the sample sizes (Figure 3 in the main article, bottom-left).
We attribute this fact to the increasing power of detecting artificial DIF. This also explains
the increasing false alarm rates of the four-anchor-AO and the four-anchor-NC methods: The
absolute scale shifts were almost constant over the simulated range of the sample size but the

false alarm rates increased (Figure 3 in the main article, bottom-left).
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For the four-anchor-SA method the absolute scale shift also decreased with increasing sample
size in regions of medium or large sample sizes (Figure 4 in our main article, left) and so did
the false alarm rate in the respective range of the sample sizes (Figure 3 in our main article,
bottom-left).

However, in case of pure replications, the scale shift of the benchmark method was fluctuat-
ing around zero, whereas the scale shift of all remaining constant four-anchor methods was

negative (Figure 4 in our main article, right) and decreasing with the sample size.

These findings explain why the u-shaped patterns occurred for the four-anchor-SA and the
four-anchor-NC method: These methods were able to reduce the absolute scale shift with
increasing sample size because the scale shift in pure replications reduced and the risk of
contamination reduced as well (i.e. the number of pure replications increased). Taking the
increasing power of detecting artificial DIF with growing sample size into account, an inversely
u-shaped pattern resulted for the false alarm rates. In contrast to this, the four-anchor-AO
method always displayed a relatively high scale shift (that only reduced slightly when the
anchor was pure). The power of detecting artificial DIF increased with growing sample size

and, therefore, the false alarm rate showed an increase and no considerable decrease.

Summary

In summary, the interaction between a decreasing extent of artificial DIF and an increasing
statistical power to detect artificial DIF with growing sample size resulted in an inversely
u-shaped false alarm rate. The risk and degree of contamination alone cannot explain the
presence of artificial DIF. The anchor items selected by certain anchor selection strategies
differed systematically from randomly chosen pure anchor items even if the located anchor
items were by definition DIF-free. Counterintuitively instead of items with small differences,
these methods tended to select exactly those items with large differences. Therefore, the
anchor items found by the SA-, the NC- or the AO-selection strategy displayed a negative
scale shift in the additional simulation study and, thus, shifted the scales apart and induced
artificial DIF.

This implies that not only the risk and the degree of contamination but also the scale shift in
by definition pure replications should be regarded when anchor methods are developed and
investigated in simulation studies. Otherwise, inflated false alarm rates might occur even if

the anchor is pure.

F. Summary and discussion

Practical recommendations

Our simulation study highlights the importance of the anchor selection for the correct classi-

fication of DIF and DIF-free items and the necessity of a careful consideration of the anchor
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method to avoid high misclassification rates and doubtful test results.

In case of balanced DIF, the all-other method was slightly better than the iterative-forward-
SA strategy. However, due to the fact that the all-other method resulted in seriously inflated
false alarm rates when the situation was unbalanced — and that it is doubtful whether the
situation of balanced DIF is ever met in practice (Wang and Yeh 2003; Wang et al. 2012) —

the usage of this anchor method is inadvisable.

Thus, the newly suggested iterative-forward-SA strategy is recommended. When the sample
size was large enough, the false alarm rates were low in any condition even if the anchor was
contaminated and the hit rates grew rapidly. The adequacy of the selection strategies — by
single-anchor (SA) or by all-other (AO) — depended on the DIF situation. In the balanced
condition, the AO-selection strategy performed suitable, whereas in the unbalanced condition
the SA-selection strategy was more appropriate. But when the iterative-forward class was
used, the advance of the AO-selection strategy was marginal. Therefore, we recommend the

newly suggested iterative-forward-SA method over the iterative-forward-AO method.

Future research

While our research was limited to DIF detection in the Rasch model using the Wald test,
future research may investigate the usefulness of the iterative-forward-SA method for other
IRT models and combine it with other DIF detection methods.

In particular, it would be interesting to explore the possibility of employing the iterative-
forward strategy together with other IRT-based tests, such as the widely used (see, e.g.,
Woods 2009; Gonzélez-Betanzos and Abad 2012) likelihood ratio test, and investigate its
compatibility with non-IRT based methods. Future research may e.g. investigate whether
those items selected as anchor items by the newly suggested iterative-forward-SA method
with the Wald test (or an alternative DIF test) also provide a useful matching criterion
for non-IRT based tests. The test results could then be compared with those of classical
purification methods that were previously found to improve the final test results (see Miller
and Oshima 1992; Clauser, Mazor, and Hambleton 1993; Navas-Ara and Gomez-Benito 2002,

and the references therein).

When other IRT models were the underlying data generating process, previous research found
highly discriminating items to be better suited as anchor items (Lopez Rivas et al. 2009;
Gonzélez-Betanzos and Abad 2012). Thus, the iterative forward procedure might also be

combined with a minimum discrimination requirement for the anchor candidates.

Furthermore, the iterative forward anchor class with the SA-selection may be compared with
modifications of the anchor selection strategy. For example, Shih and Wang (2009) suggest to
use the items corresponding to the lowest rank of the mean absolute DIF statistics similar to
the rank-based strategy of Woods (2009). Then items are anchor candidates if they display

the lowest mean DIF test statistic when every item is tested for DIF using every other item
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as constant single-anchor. This modification may be less affected by sample size. Wang et al.
(2012) established an improvement of the AO-selection strategy by incorporating additional
iterations. Firstly, every item is tested for DIF using the all-other method. Then, iteratively,
DIF items are excluded from the anchor candidates and a new DIF analysis using the current
anchor is conducted until two steps reach the same results. Finally, the anchor items are
selected from the remaining candidates using the rank-based strategy. Future research could

compare the improved AO-selection to the SA-selection strategy.

Moreover, the DIF test results may also be improved by the construction of new anchor
selection strategies. Ideally, the anchor items are DIF-free and induce no artificial scale shift.
Furthermore, the impact of the degree of contamination is important for the appropriateness
of the results in DIF detection. Therefore, improving the anchor selection strategies with the

aim to locate anchors with a small degree of contamination remains an important task.
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