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Motivation: Overall treatment effect

Base model:

R> basemodel <- model(response ~ treatment, data)
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Motivation: Treatment-subgroup interaction

Base model:

R> basemodel <- model(response ~ treatment, data)

Subgroup interaction model:

R> sgrpmodel <- model(response ~ treatment * gender, data)

Equivalently:

R> sgmodel_m <- model(response ~ treatment, data,
+ weights = as.numeric(gender == "male"))

R> sgmodel_f <- model(response ~ treatment, data,
+ weights = as.numeric(gender == "female"))
Next steps:

@ Find data-driven subgroups.
@ Refine from stratified to personalized treatment effects.



From stratified to personalized treatment effects

Basic idea:

@ Treatment-subgroup interactions can also be represented by
subgroups or weights.

@ Rather than hard 0/1 grouping, a soft weighting would enable
observation-specific and thus personalized models.

@ Use model-based forests and trees to find the weights in a
data-driven way.



Stratified treatment effects

Goal: Find subgroups of observations that are (almost) homogenous
with respect to the parameters of the base model.

Model-based recursive partitioning:

@ Fit the base model to the data — e.g., intercept plus treatment
effect.

© Assess whether the model scores are associated with (or change
along) any of the available covariates — e.g., using parameter
instability tests (strucchange) or conditional inference (coin).

© Split the sample along the covariate with the strongest association

or instability. Choose breakpoint with highest improvement of the
model fit — e.g., in terms of log-likelihood.

© Repeat steps 1-3 recursively in the subgroups until some stopping
criterion is met — e.g., for significance or sample size.
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Stratified treatment effects

n
VAN

Weights: Only observations j in the same subgroup as observation i
enter the corresponding subgroup model.

R> sgmodel_1 <- model(response ~ treatment, data,
+ weights = as.numeric(subgroup == 1))
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Personalized treatment effects
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Weights: Obtain a finer measure of similarity between all observations
j and observation i via a forest/ensemble of trees.



Personalized treatment effects

ANEVANRRYAN
RVANVANAN
A
A\

Weights: Obtain a finer measure of similarity between all observations
j and observation i via a forest/ensemble of trees.

Randomization:
@ Subsample of the training data (per tree).
@ Subsample of covariates (per node).



Personalized treatment effects
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Weights: Obtain a finer measure of similarity between all observations
j and observation i via a forest/ensemble of trees.

Aggregate: The weight of observation j for modeling the treatment
effect for observation i is the sum (or mean) of assignments to the
same node = wj = 2 (or equivalently 2/3).



Personalized treatment effects

Personalized model:

R> pmodel_i <- model(response ” treatment, data, weights = w_i)

@ Observation j enters wj; = 2 times in pmodel,.
@ Observations j are the entire learning data.

@ Observations i may be in-sample observations from the learning
data or new out-of-sample observations.



PRO-ACT database

Pooled Resource Open-Access ALS Clinical Trials Database:

@ Amyotrophic lateral sclerosis.
@ Riluzole versus no treatment.
@ 23 phase-2 clinical trials.

@ Two primary endpoints:

@ Survival time
(3306 patients, 18 covariates).
o ALS functional rating scale
(2534 patients, 57 covariates).

https://nctu.partners.org/ProACT/
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Survival time: Weibull model

Base model:
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Survival time: Weibull model

Base model:

R> library("survival")
R> basemodel <- survreg(Surv(survival.time, cens) ~ Riluzole,
+ data = ALSsurvdata, dist = "weibull")

Score extractor:

R> wbscore <- function(data, weights) {

mod <- survreg(Surv(survival.time, cens) ~ Riluzole,
data = data, weights = weights, subset = weights > O,

dist = "weibull", init = c(6.7, 0))

ef <- as.matrix(sandwich::estfun(mod))

ret <- matrix(0, nrow = nrow(data), ncol = ncol(ef))
ret[weights > 0,] <- ef

ret
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Survival time: Weibull forest

Weibull forest:

R> alsforest <- cforest(

+ survival.time + cens + Riluzole age + gender + etc,
+ data = ALSsurvdata, ytrafo = wbscore,

+ ntree = 100, perturb = list(replace = FALSE))

Weights:
R> w <- predict(alsforest, type = "weights", 00B = TRUE)

Personalized model for patient i:

R> pmodel_i <- survreg(Surv(survival.time, cens) ~ Riluzole,
+ data = ALSsurvdata, dist = "weibull", weights = w[, i])



Survival time: Dependence plots

Visualization: Dependence of median survival time difference on most
important patient characteristics.
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ALSFRS: Gaussian GLM with log link

Base model:
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ALSFRS: Dependence plots

Visualization: Dependence of treatment effect 3; (log-scale) on most
important patient characteristics.
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Check for overfitting

Assessment: Difference in log-likelihood against base model.
n

A() = ) {((response, treatment);, pmodel;) —
i=1

n
Z ¢((response, treatment);, basemodel)

i=1

Comparison: Observed vs. maximum obtained in 50 parametric
bootstrap samples drawn under the base-model null hypothesis.

A(0) Survival ALSFRS
Observed 71.5 851.0
Maximum bootstrapped 1.0 122.7
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