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Motivation: Overall treatment effect

Base model:

R> basemodel <- model(response ~ treatment, data)
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Find data-driven subgroups.

Refine from stratified to personalized treatment effects.
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From stratified to personalized treatment effects

Basic idea:

Treatment-subgroup interactions can also be represented by
subgroups or weights.

Rather than hard 0/1 grouping, a soft weighting would enable
observation-specific and thus personalized models.

Use model-based forests and trees to find the weights in a
data-driven way.



Stratified treatment effects

Goal: Find subgroups of observations that are (almost) homogenous
with respect to the parameters of the base model.

Model-based recursive partitioning:
1 Fit the base model to the data – e.g., intercept plus treatment

effect.
2 Assess whether the model scores are associated with (or change

along) any of the available covariates – e.g., using parameter
instability tests (strucchange) or conditional inference (coin).

3 Split the sample along the covariate with the strongest association
or instability. Choose breakpoint with highest improvement of the
model fit – e.g., in terms of log-likelihood.

4 Repeat steps 1–3 recursively in the subgroups until some stopping
criterion is met – e.g., for significance or sample size.



Stratified treatment effects

Weights: Only observations j in the same subgroup as observation i
enter the corresponding subgroup model.

R> sgmodel_1 <- model(response ~ treatment, data,
+ weights = as.numeric(subgroup == 1))
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Personalized treatment effects

i, j

Weights: Obtain a finer measure of similarity between all observations
j and observation i via a forest/ensemble of trees.

Randomization:

Subsample of the training data (per tree).

Subsample of covariates (per node).



Personalized treatment effects

i, j i, j

j i

Weights: Obtain a finer measure of similarity between all observations
j and observation i via a forest/ensemble of trees.

Aggregate: The weight of observation j for modeling the treatment
effect for observation i is the sum (or mean) of assignments to the
same node⇒ wij = 2 (or equivalently 2/3).



Personalized treatment effects

Personalized model:

R> pmodel_i <- model(response ~ treatment, data, weights = w_i)

Observation j enters wij = 2 times in pmodeli .

Observations j are the entire learning data.

Observations i may be in-sample observations from the learning
data or new out-of-sample observations.



PRO-ACT database

Pooled Resource Open-Access ALS Clinical Trials Database:

Amyotrophic lateral sclerosis.

Riluzole versus no treatment.

23 phase-2 clinical trials.
Two primary endpoints:

Survival time
(3306 patients, 18 covariates).
ALS functional rating scale
(2534 patients, 57 covariates).
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Survival time: Weibull model

Base model:

P(Y ≤ y |X = x) = F
(

log(y)− α1 − βx
α2

)
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Survival time: Weibull model

Base model:

R> library("survival")
R> basemodel <- survreg(Surv(survival.time, cens) ~ Riluzole,
+ data = ALSsurvdata, dist = "weibull")

Score extractor:
R> wbscore <- function(data, weights) {
+
+ mod <- survreg(Surv(survival.time, cens) ~ Riluzole,
+ data = data, weights = weights, subset = weights > 0,
+ dist = "weibull", init = c(6.7, 0))
+
+ ef <- as.matrix(sandwich::estfun(mod))
+
+ ret <- matrix(0, nrow = nrow(data), ncol = ncol(ef))
+ ret[weights > 0,] <- ef
+ ret
+ }



Survival time: Weibull forest

Weibull forest:
R> alsforest <- cforest(
+ survival.time + cens + Riluzole ~ age + gender + etc,
+ data = ALSsurvdata, ytrafo = wbscore,
+ ntree = 100, perturb = list(replace = FALSE))

Weights:
R> w <- predict(alsforest, type = "weights", OOB = TRUE)

Personalized model for patient i:
R> pmodel_i <- survreg(Surv(survival.time, cens) ~ Riluzole,
+ data = ALSsurvdata, dist = "weibull", weights = w[, i])



Survival time: Dependence plots

Visualization: Dependence of median survival time difference on most
important patient characteristics.
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ALSFRS: Gaussian GLM with log link

Base model:

E
(

ALSFRS6

ALSFRS0

∣∣∣∣X = x
)

=
E(ALSFRS6|X = x)

ALSFRS0
= exp{α + βx}
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ALSFRS: Dependence plots

Visualization: Dependence of treatment effect βi (log-scale) on most
important patient characteristics.
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Check for overfitting

Assessment: Difference in log-likelihood against base model.

∆(`) =
n∑

i=1

`((response, treatment)i , pmodeli)−

n∑
i=1

`((response, treatment)i , basemodel)

Comparison: Observed vs. maximum obtained in 50 parametric
bootstrap samples drawn under the base-model null hypothesis.

∆(`) Survival ALSFRS

Observed 71.5 851.0

Maximum bootstrapped 1.0 122.7
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