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Goals

Distributional:

• Specify the complete probability distribution (including
location, scale, and shape).

Tree:

• Automatic detection of steps and abrupt changes.

• Capture non-linear and non-additive effects and
interactions.

Forest:

• Smoother effects.

• Stabilization and regularization of the model.



Distributional trees

DGP: Y | X = x ∼ N (µ(x), σ2(x))

x
1

≤ 0.4 > 0.4

n = 200
   True parameters:   

µ = 4
σ = 1

2

x
3

≤ 0.8 > 0.8

n = 200
   True parameters:   

µ = 12
σ = 3

4
n = 100

   True parameters:   
µ = 4
σ = 3

5



Distributional trees

Model: disttree(y ~ x)

x
p < 0.001

1

≤ 0.397 > 0.397

n = 200
Estimated parameters:

µ = 4.00
σ = 0.99

2

x
p < 0.001

3

≤ 0.8 > 0.8

n = 201
Estimated parameters:

µ = 12.01
σ = 3.05

4
n = 99

Estimated parameters:
µ = 3.91
σ = 2.92

5



Distributional trees

Model: disttree(y ~ x)

x
p < 0.001

1

≤ 0.397 > 0.397

Node 2 (n = 200)

−5

0

5

10

15

20

●

x
p < 0.001

3

≤ 0.8 > 0.8

Node 4 (n = 201)

−5

0

5

10

15

20

●

Node 5 (n = 99)

−5
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20



Distributional trees

Model: disttree(y ~ x)

x
p < 0.001

1

≤ 0.397 > 0.397

Node 2 (n = 200)

−5 0 5 10 15 20

0

0.1

0.2

0.3

0.4

x
p < 0.001

3

≤ 0.8 > 0.8

Node 4 (n = 201)

−5 0 5 10 15 20

0

0.1

0.2

0.3

0.4

Node 5 (n = 99)

−5 0 5 10 15 20

0

0.1

0.2

0.3

0.4



Distributional trees
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Global likelihood estimation

• Specify a parametric distribution family F(·; θ) with
parameter vector θ ∈ Θ capturing location, scale, shape.

• Cumulative distribution function and log-likelihood:

F(y; θ) = Pθ(Y ≤ y)

`(θ; y) = log(f(y; θ))

• Estimate θ̂ via maximum likelihood based on a learning
sample y1, . . . , yn:

θ̂ = max
θ∈Θ

n∑
i=1

`(θ; yi)



Adaptive local likelihood estimation

Idea: Covariates captured through adaptive weights.

θ̂(x) = max
θ∈Θ

n∑
i=1

wi(x) · `(θ; yi).

Question: How to choose weighting function wi(x)?

Possible answers: Based on learning sample y1, . . . , yn and
(possibly new) observation x.

• Tree: wi(x) ∈ {0,1} indicates whether x and yi are
classified into the same subgroup.

• Forest: wi(x) ∈ [0,1] averages the weights for x and yi
across trees.



Distributional trees and forests

Tree:

1 Estimate θ̂ via maximum likelihood (without covariates).

2 Test for associations or instabilities of the scores ∂`
∂θ (θ̂; yi)

and each partitioning variable xi.

3 Split the sample along the partitioning variable with the
strongest association or instability. Choose breakpoint
with highest improvement in log-likelihood.

4 Repeat steps 1–3 recursively until some stopping criterion
is met, yielding B subgroups Bb with b = 1, . . . ,B.

Forest: Ensemble of T trees.

• Bootstrap or subsamples.

• Random input variable sampling.



Adaptive local likelihood estimation

Estimator:

θ̂(x) = max
θ∈Θ

n∑
i=1

wi(x) · `(θ; yi)

Weights:

wbase
i (x) = 1

wtree
i (x) =

B∑
b=1

I((xi ∈ Bb) ∧ (x ∈ Bb))

wforest
i (x) =

1

T

T∑
t=1

Bt∑
b=1

I((xi ∈ Btb) ∧ (x ∈ Btb))



Simulation

Models: disttree, distforest (100 trees), gamlss.

Data:

y ∼ N (µ(x), σ(x))

x ∼ U(−0.4,1)

µ(x) = 10 · exp
{
−(4 · x− 2)2·κ}

σ(x) = 0.5 + 2 · |x|

Parameters:

• 1 replication: n = 300, κ = 2.

• 150 replications: n = 1000, κ = 1,8,15, . . . ,71.



Simulation
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Simulation
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Model specification

Covariates: Automatically through adaptive forest weights.

Response: Distributional specification needed.

• Continuous responses: Gaussian, . . .

• Limited responses: Censored Gaussian, . . .

• Survival times: Exponential, Weibull, . . .

• Count: Poisson, negative binomial, . . .

Guidance: Literature, theory, experience, . . .

Alternative: Transformation models.



Transformation models

Advantages:

• Does not require specification of distribution family.

• More flexible framework.

Distribution function:

F(y; θ) = Φ(aBs,d(y)>θ)

• aBs,d(y)>θ is a smooth, monotone Bernstein polynomial of
degree d.

• d = 1 corresponds to N (µ, σ2).

• d = 5 is surprisingly flexible.

Example: Body Mass Index explained by lifestyle factors
(Switzerland).



Transformation models
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Software

Package: disttree available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/

Main functions:

distfit Distributional fit (ML, gamlss.family/custom list).

No covariates.

disttree Distributional tree (ctree/mob + distfit).

Covariates as partitioning variables.

distforest Distributional forest (disttree ensemble).

Covariates as partitioning variables.

https://R-Forge.R-project.org/projects/partykit/
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