

Tree Models for Assessing Covariate-Dependent Method Agreement

Siranush Karapetyan, Alexander Hapfelmeier, Achim Zeileis

https://github.com/Hapfelmeier/coat

Goal: Assess agreement of measurements made by two (or more) methods.

Bland-Altman plot: Classic technique visualizing *limits of agreement* for differences vs. means of measurements.

Goal: Assess agreement of measurements made by two (or more) methods.

Bland-Altman plot: Classic technique visualizing *limits of agreement* for differences vs. means of measurements.

Illustration: Activity energy expenditure (AEE, in kilocalories) in 24 hours, measured by two different accelerometers (ActiGraph vs. Actiheart).

Source: Henriksen *et al.* (2019). "Validity of the Polar M430 Activity Monitor in Free-Living Conditions: Validation Study." *JMIR Formative Research*.

Up to now: One-fits-all paradigm in method comparison studies.

Question: Does method agreement depend on external or internal factors?

Up to now: One-fits-all paradigm in method comparison studies.

Question: Does method agreement depend on external or internal factors?

Here: Gender, height, weight, age, dominant hand, technician.

Up to now: One-fits-all paradigm in method comparison studies.

Question: Does method agreement depend on external or internal factors?

Here: Gender, height, weight, age, dominant hand, technician.

Furthermore: Trend by mean level of agreement?

Up to now: One-fits-all paradigm in method comparison studies.

Question: Does method agreement depend on external or internal factors?

Here: Gender, height, weight, age, dominant hand, technician.

Furthermore: Trend by mean level of agreement?

R> head(activity, 4)

	ActiGraph	ActiheartA	ActiheartB	Gender	Height	Weight	Age	DominantHand	Technician
1	1062.2	1086	1018	Female	166	63	39	Right	Laila
2	519.9	1182	1072	Female	166	59	57	Left	Laila
3	1268.1	2033	2019	Male	176	75	56	Right	Laila
4	571.3	1542	1967	Male	182	103	39	Right	Andre

Idea: Explore covariate dependency of limits of agreement by recursive partitioning (trees).

New method: Conditional method agreement trees (COAT).

Base model: Bland-Altman. Estimate mean and variance of measurement differences $Y = M_1 - M_2$.

Implementation: R package *coat*, based on *partykit*, available from GitHub and soon CRAN.

Algorithm:

- A model is fit to the entire data by optimizing some objective function or a transformation function is defined.
- A split variable is selected based on the association of some goodness-of-fit measure with each possible variable. The variable with the highest significant association is selected.
- A split point is chosen so the goodness-of-fit is maximized in the resulting subsets.
- Steps 1–3 are repeated until no more significant associations are found or the resulting sample is too small for further splits.

Flavors: COAT based on conditional inference trees (CTree) vs. model-based recursive partitioning (MOB).

Flavors: COAT based on conditional inference trees (CTree) vs. model-based recursive partitioning (MOB).

CTree-based:

- *Nonparametric transformation:* Measurement differences and corresponding squared residuals.
- *Equivalent to:* Parametric maximum likelihood scores for mean and variance in normally distributed model.
- *Tests:* Asymptotic permutation tests.

Flavors: COAT based on conditional inference trees (CTree) vs. model-based recursive partitioning (MOB).

CTree-based:

- *Nonparametric transformation:* Measurement differences and corresponding squared residuals.
- *Equivalent to:* Parametric maximum likelihood scores for mean and variance in normally distributed model.
- *Tests:* Asymptotic permutation tests.

MOB-based:

- *Goodness of fit:* Maximum likelihood scores for mean and variance in normally distributed model.
- *Tests:* Asymptotic parameter instability tests (fluctuation tests).

Details: Tests in COAT (CTree).

Details: Tests in COAT (CTree).

```
R> sctest(tree2, node = 1)
```

	Gender	Height	Weight	Age	DominantHand	Technician
statistic	0.8363	0.5861	2.7550	10.33618	1.1945	1.6932
p.value	0.9995	0.9999	0.8692	0.03919	0.9963	0.9802
means(ActiGraph, ActiheartB)						
statistic	statistic 14.105662					
p.value 0.006039						

_

R> sctest(tree2, node = 2)

	Gender	Height	Weight	Age	DominantHand	Technician			
statistic	1.3391	4.2119	0.2114	3.2824	0.3686	3.3210			
p.value	0.9934	0.5969	1.0000	0.7785	1.0000	0.7713			
	means(ActiGraph, ActiheartB)								
statistic 7.7676									
p.value	0.1354								

Simulation study

Comparison: Performance of three tree models.

- CTree for measurement differences only $(Y = M_1 M_2)$.
- COAT based on CTree.
- COAT based on MOB.

Measurements: $M_j \sim \mathcal{N}(\mu_j, \sigma_i^2)$ for j = 1, 2.

Split variables: $X_1, \ldots, X_5 \sim \mathcal{N}(0, 1)$ independently.

Sample sizes: $n = 50, 100, \dots, 1000$.

Replications: 10000.

Simulation study: Null

- CTree - COAT (CTree) - COAT (MOB)

Stump scenarios: Power to detect split in one variable.

- CTree - COAT (CTree) - COAT (MOB)

— CTree — COAT (CTree) — COAT (MOB)

— CTree — COAT (CTree) — COAT (MOB)

Simulation study: Tree

Tree scenarios: Adjusted Rand index to recover partition in two variables.

Simulation study: Tree 1

- CTree - COAT (CTree) - COAT (MOB)

Simulation study: Tree 2

- CTree - COAT (CTree) - COAT (MOB)

References

Karapetyan S, Zeileis A, Henriksen A, Hapfelmeier A (2023). "Tree Models for Assessing Covariate-Dependent Method Agreement." *arXiv.org E-Print Archive*, arXiv:2306.04456. doi:10.48550/arXiv.2306.04456

Henriksen A, Grimsgaard S, Horsch A, Hartvigsen G, Hopstock L (2019). "Validity of the Polar M430 Activity Monitor in Free-Living Conditions: Validation Study." *JMIR Formative Research*, **3**(3):e14438. doi:10.2196/14438

Mastodon: @zeileis@fosstodon.org
Twitter: @AchimZeileis
Web: https://www.zeileis.org/