

Visualizing Goodness of Fit of Probabilistic Regression Models

Achim Zeileis

https://topmodels.R-Forge.R-project.org/

Classical approach: Model conditional expectation $E(y_i | \mathbf{x}_i) = \mu_i$ (i = 1, ..., n). **Regression model:** $\mu_i = r(\mathbf{x}_i)$

Often: Full conditional probability distribution is of interest.

GAM

Classical approach: Model conditional expectation $E(y_i | \mathbf{x}_i) = \mu_i$ (i = 1, ..., n). **Regression model:** $\mu_i = r(\mathbf{x}_i)$

Often: Full conditional probability distribution is of interest.

Normal (G)LM w/ constant variance

GAM

Classical approach: Model conditional expectation $E(y_i | \mathbf{x}_i) = \mu_i$ (i = 1, ..., n). **Regression model:** $\mu_i = r(\mathbf{x}_i)$

Often: Full conditional probability distribution is of interest.

Normal (G)LM w/ constant variance

GAMLSS

Random forest

Classical approach: Model conditional expectation $E(y_i | \mathbf{x}_i) = \mu_i$ (i = 1, ..., n). **Regression model:** $\mu_i = r(\mathbf{x}_i)$

Often: Full conditional probability distribution is of interest.

Normal (G)LM w/ constant variance

GAMLSS

Distributional forest

Formally: Fit distribution with cumulative distribution function $F(y_i|\theta_i)$ and parameter vector θ_i for each observation y_i .

Formally: Fit distribution with cumulative distribution function $F(y_i|\theta_i)$ and parameter vector θ_i for each observation y_i .

Forecasting: $\hat{\theta}_i = \hat{r}(x_i)$.

- Model fit typically yields distribution parameters.
- Implies all other aspects of the distribution $F(\cdot|\theta_i)$.
- Thus: Moments, quantiles, probabilities, ...

Response: Goals scored by the two teams in all 64 matches.

Covariates: Basic match information and prediction of team (log-)abilities (based on bookmakers odds).

R> data("FIFA2018", package = "distributions3")
R> tail(FIFA2018, 2)
goals team match type stage logability difference
127 4 FRA 64 Final knockout 0.8866 0.629
128 2 CR0 64 Final knockout 0.2576 -0.629

Model: Poisson GLM with mean λ_i using log link.

In R:

R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)</pre>

Forecasting: In-sample for simplicity.

```
R> tail(procast(m), 2)
```

distribution

```
127 Poisson distribution (lambda = 1.6044)
128 Poisson distribution (lambda = 0.9538)
```

In R:

R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)</pre>

Forecasting: In-sample for simplicity.

```
R> tail(procast(m), 2)
```

distribution 127 Poisson distribution (lambda = 1.6044) 128 Poisson distribution (lambda = 0.9538)

Implies:

- Probabilities for match results (assuming independence of goals).
- Corresponding probabilities for win/draw/lose.

Example: Probabilities for final France-Croatia.

Example: Probabilities for final France-Croatia. Result 4-2.

Idea:

- Use visualizations instead of just summing up scores.
- Gain more insights graphically.
- Reveal different types of model misspecification.

Idea:

- Use visualizations instead of just summing up scores.
- Gain more insights graphically.
- Reveal different types of model misspecification.

Questions: Graphics are not new but novel unifying view.

- What are useful elements of such graphics?
- What are relative (dis)advantages?

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:

- Observed

frequencies.

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:

- Observed frequencies.
- Compare: Expected.

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:

- Observed frequencies.
- Compare: Expected.

Probabilistic calibration:

- Probability integral $u_i = F(y_i \mid \hat{\theta}_i).$
- Compare: Uniform.

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:

- Observed frequencies.
- Compare: Expected.

Probabilistic calibration:

- Probability integral $u_i = F(y_i \mid \hat{\theta}_i).$
- Compare: Uniform.

Probabilistic calibration:

- Quantile residuals $\Phi^{-1}(u_i)$.
- Compare: Normal

Observed vs. expected frequencies: Standing, with reference line.

 $\sqrt{\text{Observed}}$ vs. $\sqrt{\text{expected}}$ frequencies: Standing, with reference line.

$\sqrt{\text{Observed}}$ vs. $\sqrt{\text{expected}}$ frequencies: Hanging.

 $\sqrt{\text{Observed}}$ vs. $\sqrt{\text{expected}}$ frequencies: Hanging, with confidence interval.

Rootogram:

- Frequencies on raw or square-root scale.
- Hanging, standing, or suspended styled rootograms.

Rootogram:

- Frequencies on raw or square-root scale.
- Hanging, standing, or suspended styled rootograms.

Overall:

- Advantage: Scale of observations is natural, direct interpretation.
- Disadvantage: Needs to be compared with a combination of distributions.

PIT: Randomization 1a.

PIT: Randomization 1a, with reference line.

PIT: Randomization 1a, with reference line and confidence interval.

PIT: Randomization 1b.

PIT: Randomization 1c.

PIT: Randomization 1c, with simulation intervals.

PIT: 10 random draws.

PIT: 100 random draws.

PIT: Expected.

Randomized quantile residuals: Expected.

Randomized quantile residuals: Expected, with reference.

Observed vs. expected quantiles: Q-Q plot.

Observed vs. expected quantiles: Detrended Q-Q plot (worm plot).

- Probability scale or transformed to normal scale.
- Randomized or expected for discrete distributions.

PIT histogram:

- Probability scale or transformed to normal scale.
- Randomized or expected for discrete distributions.

Q-Q residuals plot:

- Normal or uniform scale.
- Detrended Q-Q plot (worm plot).

PIT histogram:

- Probability scale or transformed to normal scale.
- Randomized or expected for discrete distributions.

Q-Q residuals plot:

- Normal or uniform scale.
- Detrended Q-Q plot (worm plot).

Overall:

- Advantage: Comparison with only one distribution (uniform or normal).
- *Disadvantages:* Scale is not so natural. May require randomization.

Experiment: Behaviour of adolescents (mostly 11–19).

- Setup: Nine rounds of a lottery with positive expectation.
- Response: Proportion of invested points across all rounds.
- Covariates: Arrangement (single vs. team), gender, age.

Experiment: Behaviour of adolescents (mostly 11–19).

- Setup: Nine rounds of a lottery with positive expectation.
- Response: Proportion of invested points across all rounds.
- *Covariates:* Arrangement (single vs. team), gender, age.

Models:

- Ordinary least squares, interpreted as homoscedastic Gaussian model.
- Extended-support beta mixture regression (with point masses for 0 and 1).

Experiment: Behaviour of adolescents (mostly 11–19).

- Setup: Nine rounds of a lottery with positive expectation.
- Response: Proportion of invested points across all rounds.
- *Covariates:* Arrangement (single vs. team), gender, age.

Models:

- Ordinary least squares, interpreted as homoscedastic Gaussian model.
- Extended-support beta mixture regression (with point masses for 0 and 1).

Goodness of fit: Similar fitted means but rather different distributions.

Rootogram:

Rootogram:

Q-Q residual plot:

Q-Q residual plot: Detrended.

Software: topmodels

R package: topmodels. Forecasting and assessment of probabilistic models.

Not yet on CRAN: https://topmodels.R-Forge.R-project.org/

Visualizations:

rootogram()	Rootograms of observed and fitted frequencies

- pithist() PIT histograms
- qqrplot() Q-Q plots for quantile residuals
- wormplot() Worm plots for quantile residuals
- reliagram() (Extended) reliability diagrams

Software: topmodels

Numeric quantities:

procast()Probabilistic forecasts (probabilities, quantiles, etc.)proscore()Evaluate scoring rules for procastspitresiduals()Probability integral transform (PIT) residualsqresiduals()(Randomized) quantile residuals

Software: topmodels

Numeric quantities:

procast()	Probabilistic forecasts (probabilities, quantiles, etc.)
proscore()	Evaluate scoring rules for procasts
<pre>pitresiduals()</pre>	Probability integral transform (PIT) residuals
<pre>qresiduals()</pre>	(Randomized) quantile residuals

Object orientation:

- Work with distribution objects (vectorized) from *distributions3*.
- Model classes like lm, glm, gamlss, bamlss, hurdle, zeroinfl, ...
- New model classes can be easily added if distribution can be extracted.

References

Lang MN, Zeileis A, Stauffer R, *et al.* (2023). "topmodels: Infrastructure for Inference and Forecasting in Probabilistic Models." *R package version 0.3-0*. https://topmodels.R-Forge.R-project.org/

Hayes A, Moller-Trane R, Jordan D, Northrop P, Lang MN, Zeileis A, *et al.* (2022). "distributions3: Probability Distributions as S3 Objects." *R package version 0.2.1*. https://alexpghayes.github.io/distributions3/

Czado C, Gneiting T, Held L (2009). "Predictive Model Assessment for Count Data." *Biometrics*, **65**(4), 1254–1261. doi:10.1111/j.1541-0420.2009.01191.x

Kleiber C, Zeileis A (2016). "Visualizing Count Data Regressions Using Rootograms." *The American Statistician*, **70**(3), 296–303. doi:10.1080/00031305.2016.1173590

Zeileis A, Leitner C, Hornik K (2018) "Probabilistic Forecasts for the 2018 FIFA World Cup Based on the Bookmaker Consensus Model." Working Paper 2018-09. Working Papers in Economics; Statistics, Research Platform Empirical; Experimental Economics, Universität Innsbruck. https://EconPapers.RePEc.org/RePEc:inn:wpaper:2018-09.

Glätzle-Rützler D, Sutter M, Zeileis A (2015). "No Myopic Loss Aversion in Adolescents? An Experimental Note." *Journal of Economic Behavior & Organization*, **111**, 169–176. doi:10.1016/j.jebo.2014.12.021

Contact

Mastodon: @zeileis@fosstodon.org
X/Twitter: @AchimZeileis
Web: https://www.zeileis.org/