
Visualizing Goodness of Fit of Probabilistic Regression
Models

Achim Zeileis

https://topmodels.R-Forge.R-project.org/

https://topmodels.R-Forge.R-project.org/


Probabilistic regression models

Classical approach: Model conditional expectation E(yi|xi) = µi (i = 1, . . .n).

Regression model: µi = r(xi)

Often: Full conditional probability distribution is of interest.
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Probabilistic regression models

Formally: Fit distribution with cumulative distribution function F(yi|θi) and
parameter vector θi for each observation yi.

Forecasting: θ̂i = r̂(xi).

• Model fit typically yields distribution parameters.

• Implies all other aspects of the distribution F(·|θi).
• Thus: Moments, quantiles, probabilities, . . .
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Illustration: Goals in the 2018 FIFA World Cup

Response: Goals scored by the two teams in all 64 matches.

Covariates: Basic match information and prediction of team (log-)abilities
(based on bookmakers odds).

R> data("FIFA2018", package = "distributions3")
R> tail(FIFA2018, 2)

goals team match type stage logability difference
127 4 FRA 64 Final knockout 0.8866 0.629
128 2 CRO 64 Final knockout 0.2576 -0.629

Model: Poisson GLM with mean λi using log link.
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Illustration: Goals in the 2018 FIFA World Cup

In R:

R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

Forecasting: In-sample for simplicity.

R> tail(procast(m), 2)

distribution
127 Poisson distribution (lambda = 1.6044)
128 Poisson distribution (lambda = 0.9538)

Implies:

• Probabilities for match results (assuming independence of goals).

• Corresponding probabilities for win/draw/lose.
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Illustration: Goals in the 2018 FIFA World Cup

Example: Probabilities for final France-Croatia.

Result 4-2.
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Goodness of fit

Idea:

• Use visualizations instead of just summing up scores.

• Gain more insights graphically.

• Reveal different types of model misspecification.

Questions: Graphics are not new but novel unifying view.

• What are useful elements of such graphics?

• What are relative (dis)advantages?
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Goodness of fit

Ideas: Illustrated for FIFA Poisson model.
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Goodness of fit: Marginal calibration

Observed vs. expected frequencies: Standing, with reference line.
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Goodness of fit: Marginal calibration
√

Observed vs.
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Goodness of fit: Marginal calibration
√

Observed vs.
√

expected frequencies: Hanging.
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Goodness of fit: Marginal calibration
√

Observed vs.
√

expected frequencies: Hanging, with confidence interval.
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Goodness of fit: Marginal calibration

Rootogram:

• Frequencies on raw or square-root scale.

• Hanging, standing, or suspended styled rootograms.

Overall:

• Advantage: Scale of observations is natural, direct interpretation.

• Disadvantage: Needs to be compared with a combination of distributions.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1a.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1a, with reference line.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1a, with reference line and confidence interval.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1b.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1c.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1c, with simulation intervals.
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Goodness of fit: Probabilistic calibration

PIT: 10 random draws.
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Goodness of fit: Probabilistic calibration

PIT: 100 random draws.
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Goodness of fit: Probabilistic calibration

PIT: Expected.
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Goodness of fit: Probabilistic calibration

Randomized quantile residuals: Expected.
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Goodness of fit: Probabilistic calibration

Randomized quantile residuals: Expected, with reference.
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Goodness of fit: Probabilistic calibration

Observed vs. expected quantiles: Q-Q plot.
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Goodness of fit: Probabilistic calibration

Observed vs. expected quantiles: Detrended Q-Q plot (worm plot).
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Goodness of fit: Probabilistic calibration

PIT histogram:

• Probability scale or transformed to normal scale.

• Randomized or expected for discrete distributions.

Q-Q residuals plot:

• Normal or uniform scale.

• Detrended Q-Q plot (worm plot).

Overall:

• Advantage: Comparison with only one distribution (uniform or normal).

• Disadvantages: Scale is not so natural. May require randomization.

11 / 21



Goodness of fit: Probabilistic calibration

PIT histogram:

• Probability scale or transformed to normal scale.

• Randomized or expected for discrete distributions.

Q-Q residuals plot:

• Normal or uniform scale.

• Detrended Q-Q plot (worm plot).

Overall:

• Advantage: Comparison with only one distribution (uniform or normal).

• Disadvantages: Scale is not so natural. May require randomization.

11 / 21



Goodness of fit: Probabilistic calibration

PIT histogram:

• Probability scale or transformed to normal scale.

• Randomized or expected for discrete distributions.

Q-Q residuals plot:

• Normal or uniform scale.

• Detrended Q-Q plot (worm plot).

Overall:

• Advantage: Comparison with only one distribution (uniform or normal).

• Disadvantages: Scale is not so natural. May require randomization.

11 / 21



Illustration: Loss aversion in adolescents

Experiment: Behaviour of adolescents (mostly 11–19).

• Setup: Nine rounds of a lottery with positive expectation.

• Response: Proportion of invested points across all rounds.

• Covariates: Arrangement (single vs. team), gender, age.

Models:

• Ordinary least squares, interpreted as homoscedastic Gaussian model.

• Extended-support beta mixture regression (with point masses for 0 and 1).

Goodness of fit: Similar fitted means but rather different distributions.

12 / 21



Illustration: Loss aversion in adolescents

Experiment: Behaviour of adolescents (mostly 11–19).

• Setup: Nine rounds of a lottery with positive expectation.

• Response: Proportion of invested points across all rounds.

• Covariates: Arrangement (single vs. team), gender, age.

Models:

• Ordinary least squares, interpreted as homoscedastic Gaussian model.

• Extended-support beta mixture regression (with point masses for 0 and 1).

Goodness of fit: Similar fitted means but rather different distributions.

12 / 21



Illustration: Loss aversion in adolescents

Experiment: Behaviour of adolescents (mostly 11–19).

• Setup: Nine rounds of a lottery with positive expectation.

• Response: Proportion of invested points across all rounds.

• Covariates: Arrangement (single vs. team), gender, age.

Models:

• Ordinary least squares, interpreted as homoscedastic Gaussian model.

• Extended-support beta mixture regression (with point masses for 0 and 1).

Goodness of fit: Similar fitted means but rather different distributions.

12 / 21



Illustration: Loss aversion in adolescents

Rootogram:
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Illustration: Loss aversion in adolescents

PIT histogram:
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Illustration: Loss aversion in adolescents

Q-Q residual plot:
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Illustration: Loss aversion in adolescents

Q-Q residual plot: Detrended.
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Software: topmodels

R package: topmodels. Forecasting and assessment of probabilistic models.

Not yet on CRAN: https://topmodels.R-Forge.R-project.org/

Visualizations:

rootogram() Rootograms of observed and fitted frequencies

pithist() PIT histograms

qqrplot() Q-Q plots for quantile residuals

wormplot() Worm plots for quantile residuals

reliagram() (Extended) reliability diagrams
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Software: topmodels

Numeric quantities:

procast() Probabilistic forecasts (probabilities, quantiles, etc.)

proscore() Evaluate scoring rules for procasts

pitresiduals() Probability integral transform (PIT) residuals

qresiduals() (Randomized) quantile residuals

Object orientation:

• Work with distribution objects (vectorized) from distributions3.

• Model classes like lm, glm, gamlss, bamlss, hurdle, zeroinfl, . . .

• New model classes can be easily added if distribution can be extracted.
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Contact

Mastodon: @zeileis@fosstodon.org

X/Twitter: @AchimZeileis

Web: https://www.zeileis.org/
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