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Abstract: For probabilistic modeling of circular data the von Mises distribution
is widely used. To capture how its parameters change with covariates, a regression
tree model is proposed as an alternative to more commonly-used additive models.
The resulting distributional trees are easy to interpret, can detect non-additive
effects, and select covariates and their interactions automatically. For illustration,
hourly wind direction forecasts are obtained at Innsbruck Airport based on a set
of meteorological measurements.
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1 Motivation

Circular data can be found in a variety of applications and subject areas,
e.g., hourly crime rate in the social-economics, animal movement direction
or gene-structure in biology, and wind direction as one of the most im-
portant weather variables in meteorology. Circular regression models were
first introduced by Fisher and Lee (1992) and further extended by Jam-
malamadaka and Sengupta (2001) and Mulder and Klugkist (2017) among
others. While most of the already existing approaches are built on additive
regression models, we propose an adaption of regression trees to circular
data by employing distributional trees.

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).
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2 Methodology

Distributional trees (Schlosser et. al, 2019) fuse distributional regression
modeling with regression trees based on the unbiased recursive partitioning
algorithms MOB (Zeileis et. al, 2008) or CTree (Hothorn et. al, 2006). The
basic idea is to partition the covariate space recursively into subgroups
such that an (approximately) homogeneous distributional model can be
fitted to the response in each resulting subgroup. To capture dependence
on covariates, the association between the model’s scores and each available
covariate is assessed using either a parameter instability test (MOB) or a
permutation test (CTree). In each partitioning step, the covariate with
the highest significant association (i.e., lowest significant p-value, if any)
is selected for splitting the data. The corresponding split point is chosen
either by optimizing the log-likelihood (MOB) or a two-sample test statistic
(CTree) over all possible partitions.
In this study distributional trees are adapted to circular responses by em-
ploying the von Mises distribution, also known as “the circular normal dis-
tribution”. Based on a location parameter µ ∈ [0, 2π] and a concentration
parameter κ > 0 the density for y ∈ [0, 2π] is given by:

fvM(y;µ,κ) =
1

2πI0(κ)
eκ cos(y−µ) (1)

where I0(κ) is the modified Bessel function of the first kind and order 0 (see,
e.g., Jammalamadaka and Sengupta 2001, for a more detailed overview).
In each subgroup maximum likelihood estimators µ̂ and κ̂ are obtained by
maximizing the corresponding log-likelihood �(µ,κ; y) = log(fvM(y;µ,κ)).
The model scores are given by s(y;µ,κ) = (∂µ�(µ,κ; y), ∂κ�(µ,κ; y)). In a
subgroup of size n, evaluating the scores at the individual observations and
parameter estimates s(yi; µ̂, κ̂) yields an n×2 matrix that can be employed
as a kind of residual, capturing how well a given observation conforms with
the estimated location µ̂ and precision κ̂, respectively. Hence MOB or CTree
can assess whether the scores change along with the available covariates. If
so, by maximizing a partitioned likelihood the parameter instabilities are
incorporated into the model. This procedure is repeated recursively until
there are no significant parameter instabilities or until another stopping
criterion is met (e.g., subgroup size or tree depth).

3 Application

Wind is a classical circular quantity and accurate forecasts of wind direc-
tion are of great importance for decision-making processes and risk man-
agement, e.g., in air traffic management or renewable energy production.
This study employs circular regression trees to obtain hourly wind direc-
tion forecasts at Innsbruck Airport. Innsbruck lies at the bottom of a deep
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FIGURE 1. Fitted tree based on the von Mises distribution for wind direction
forecasting. In each terminal node the empirical histogram (gray) and fitted den-
sity (red line) are depicted along with the estimated location parameter (red
hand). The covariates employed are wind direction (degree), wind speed (ms−1),
and pressure gradients (dpressure; hPa) west and east of the airport, all lagged
by one hour.
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valley in the Alps. Topography channels wind along the west-east valley
axis or along a tributary valley intersecting from the south. Hence, pres-
sure gradients to which valley wind regimes react both west and east of the
airport are considered as covariates along with other meteorological mea-
surements at the airport (lagged by one hour), such as wind direction and
wind speed at Innsbruck Airport. Note that in the meteorological context
wind direction is defined on the scale [0, 360] degree and increases clockwise
from North (0 degree).
Figure 1 depicts the resulting distributional tree, including both the empir-
ical (gray) and fitted von Mises (red) distribution of wind direction in each
terminal node. Based on the fitted location parameters µ̂, the subgroups
can be distinguished into the following wind regimes: (1) Up-valley winds
blowing from the valley mouth towards the upper valley (from east to west,
nodes 4 and 5). (2) Downslope winds blowing across the Alpine crest along
the intersecting valley towards Innsbruck (from south-east to north-west,
nodes 7 and 8). (3) Down-valley winds blowing in the direction of the valley
mouth (from west to east, nodes 12, 14, and 15). Node 11 captures observa-
tions with rather low wind speeds that cannot be distinguished clearly into
wind regimes and consequently are associated with a very low estimated
concentration κ̂. In terms of covariates, the lagged wind direction (“per-
sistence”) is mostly responsible for distinguishing the broad wind regimes
listed above while the pressure gradients and wind speed separate between
subgroups with high vs. low precision.

4 Discussion and outlook

Distributional trees for circular responses are established by coupling model-
based recursive partitioning with the von Mises distribution. The resulting
trees can capture nonlinear changes, shifts, and potential interactions in
covariates without prespecification of such effects. This is particularly use-
ful for modeling wind direction in mountainous terrain where wind shifts
can occur due to turns of the pressure gradients along a valley.

4.1 Ensembles and random forests

A natural extension are ensembles or forests of such circular trees that
can improve forecasts by regularizing and stabilizing the model. Random
forests introduced by Breiman (2001) average the predictions of an en-
semble of trees, each built on a subsample or bootstrap of the original
data. A generalization of this strategy is to obtain weighted predictions
by adaptive local likelihood estimation of the distributional parameters
(Schlosser et. al, 2019). More specifically, for each possibly new observa-
tion x a set of “nearest neighbor” weights wi(x) is obtained that is based
on how often x is assigned to the same terminal node as each learning
observation yi, i ∈ {1, . . . , n}.
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The parameters µ and κ are then estimated for each (new) observation x
by weighted maximum likelihood based on the adaptive nearest neighbor
weights:

argmax
µ,κ

n�

i=1

wi(x) · �(µ,κ; yi). (2)

Therefore, the resulting parameter estimates can smoothly adapt to the
given covariates x whereas wi(x) = 1 would correspond to the unweighted
full-sample estimates and wi(x) ∈ {0, 1} corresponds to the abrupt splits
from the tree.

4.2 Splits in circular covariates

In order to obtain more parsimonious and more stable trees another possible
extension for circular covariates (with or without a circular response) is
to consider their circular nature when searching the best split into two
segments. In general, searching the best separation of a covariate into a
“left” and “right” daughter node tries to maximize the segmented log-
likelihood:

max


 �

y∈left

�(µ̂1, κ̂1; y) +
�

y∈right

�(µ̂2, κ̂2; y)


 (3)

where µ̂1, κ̂1, µ̂2, κ̂2 are the estimated parameters of the von Mises dis-
tribution in the two daughter nodes. Searching a single split point ν in
a circular covariate ∈ [0, 2π) only considers linear splits into the intervals
left = [0, ν] and right = (ν, 2π), thus enforcing a potentially unnatural
separation at zero. This can be avoided by searching for two split points ν
and τ considering a split into one interval left = [ν, τ ] and its complement
right = [0, ν) ∪ (τ, 2π), encompassing zero. The latter strategy is invariant
to the (often arbitrary) definition of the direction at zero.
When one split point ν is sufficiently close to zero and the other τ suffi-
ciently far away, a simple linear split typically suffices to capture such a
split (as seen for the lagged wind direction in Figure 1). If both ν and τ
differ clearly from zero, two linear splits should also lead to a reasonable
(but less parsimonious) fit. However, if both ν and τ are rather close to
zero, a linear split strategy might miss such a pattern.
The required test statistic to maximally select two split points simulta-
neously is straightforward to accommodate in the CTree framework by
providing all binary indicators corresponding to the splits into left/right
intervals. However, this will become increasingly slow for larger sample sizes
but it might be possible to speed up computations by exploiting the partic-
ular covariance structure similar to Hothorn and Zeileis (2008). In the MOB
framework the extension is not quite as straightforward but one strategy
could be to adapt double maximum tests à la Bai and Perron (2003).
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Hence, the splitting idea can be naturally extended to a two-point search,
however, for an unbiased and inference-based selection the corresponding
testing strategies might need further adaption.

Computational details: R packages implementing the proposed methods
are currently under development at https://R-Forge.R-project.org/

projects/partykit/.
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