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Abstract: Many weather prediction tasks are multivariate problems, e.g., pre-
dicting several quantities (such as temperature and precipitation) for a particular
time or predicting a single quantity over time. In the latter case, a state-of-the-
art method is to fit several marginal prediction models and then combine them
using ensemble copula coupling (ECC). As an alternative approach, we propose
to fit a single multivariate Gaussian model where all parameters (means, vari-
ances, and correlations) can be expressed by additive models. For estimation of
the resulting large number of parameters a gradient boosting algorithm is em-
ployed. Results for a case study show equal performance with respect to marginal
predictive distributions and better performance with respect to the full multivari-
ate distribution in comparison to nonhomogeneous Gaussian regressions (NGRs)
combined with ECC.

Keywords: boosting; additive models; multivariate Gaussian; weather predic-
tion.

1 Introduction

To obtain calibrated weather forecasts for several lead times, e.g., predicting tem-
perature 12 h, 36 h, 60 h, . . . in advance, the output of numerical weather pre-
diction (NWP) ensemble systems is often postprocessed using statistical models.
One popular choice for temperature forecasts is nonhomogeneous Gaussian re-
gression combined with ensemble copula coupling (NGR-ECC, see Schefzik et al.,
2013). In a first step (NGR) linear models are employed for the location and scale
parameter of a Gaussian distribution for several lead times separately. In a second
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step (ECC) the predicted quantiles are reordered according to the raw ensemble
output, in order to preserve the covariance structure of the NWP ensemble.

This study aims at extending NGR in the following way: Estimating predictive
distributions for several lead times and their correlations simultaneously. The
location, scale and correlation parameters of a multivariate Gaussian (MVN)
will be expressed by GAM-type additive predictors η. Estimating multivariate
distributions with these specifications is a complex task for dimensions higher
than 2 (Klein et al., 2015). Gradient boosting can offer an attractive solution to
fit a MVN with additive predictors for all parameters as only first derivatives
of the log-likelihood with respect the predictors are required. Another benefit of
boosting is that selection and shrinkage of coefficients can be obtained.

2 Methods

The log-likelihood of the multivariate Gaussian for a k-dimensional observation
y = (y1, y2, . . . , yk)T can be parameterized as follows,

l(µ,Σ|y) = −k
2

log(2π)− 1

2
log(|Σ|)− 1

2
(y − µ)TΣ−1(y − µ),

where µ = (µ1, µ2, . . . , µk)T denotes the vector of the mean parameters and Σ
denotes the covariance matrix. The latter can be decomposed into Σ = DΩD,
where D is a diagonal matrix with the standard deviations σ1, σ2, . . . , σk on the
diagonal, and Ω is the correlation matrix with the elements ρij .

The parameters µi, σi and ρij are linked to their predictors ηµi, ησi and ηρij by
the identity, the log and the rhogit function, respectively. The partial derivatives
with respect to the predictors of µi and σi are,

∂l

∂ηµi
=

k∑
j=1

ςij(yj − µj) and
∂l

∂ησi
= −1 + ỹi

k∑
j=1

ωij ỹj ,

where ςij and ωij denote the elements of the inverse covariance matrix Σ−1 and
inverse correlation matrix Ω−1, respectively. Additionally, ỹi = (yi−µi)/σi. The
partial derivative with respect to the predictor of ρij is

∂l

∂ηρij
=

[
−1

2
ωij +

1

2

(
k∑
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ωimỹm

)(
k∑

m=1

ωjmỹm

)]
×
(
1 + η2

ρij

)− 3
2 .

In order to fit the model a gradient boosting algorithm is applied as implemented
by Umlauf et al. (2017). The algorithm is an iterative procedure. The number
of iterations mmax has to be defined in advance. In each step the coefficients
of the term which would contribute most to maximizing the log-likelihood are
updated by the proportion ν of the local estimate of the coefficients. Thus, the
boosting algorithm results in mmax distinct sets of coefficients. The optimal set
of coefficients is selected by out-of-sample validation. A generic description of
gradient boosting is given by Mayr et al. (2012).
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3 Application in weather prediction

A case study is presented for predicting temperature in Innsbruck, Austria (47.260◦N,
11.357◦E). Six lead times are considered, 12 h, 36 h, . . . , 132 h in advance. Data
is on hand from January 2011 to December 2016 leading to a sample size of
roughly 2150. The ensemble predictions of the European Centre for Medium-
Range Weather Forecasts (ECMWF) serve as NWP input. The additive predic-
tors are declared as follows,

ηµi = αi,0 + αi,1 ∗mean(ensi) + fi,cc(yearday),

ησi = βi,0 + βi,1 ∗ log(sd(ensi)) + gi,cc(yearday),

ηρij = γij,0 + γij,1 ∗ cor(ensi, ensj),

where indices i, j ∈ {1, 2, . . . , 6} refer to the lead times 12 h, 36 h, . . . , 132 h,
respectively. ensi denotes the raw ECMWF ensemble temperature forecast, and
fi,cc(yearday) and gi,cc(yearday) are cyclic smooth functions modeled by splines
to account for annual cycles. The model is trained on the period 2011–2015.
Validation on the data of year 2016 leads to an optimal set of coefficients after
mopt = 5000 iterations where ν = 0.05.

Figure 1 displays the fitted nonlinear functions fi,cc(·) and gi,cc(·), which con-
tribute to the additive predictors ηµi and ησi, respectively.

The coefficients describing fi,cc(·) were not selected within the first 5000 itera-
tions. Thus, fi,cc(·) remains flat. This suggests that the bias between the model
temperature and observations is constant throughout the year.

gi,cc(·) (Fig. 1, right) contributes to the predictor of σi on the log-scale. gi,cc(·)
reveals an annual cycle with two peaks. One occurs in January and one in
June/July. The fitted effects for all lead times vary only slightly among eachother.

However, the main focus of this study is to model the correlation structure of
temperature between the lead times, 12 h, 36 h, . . . , 132 h. Figure 2 summarizes
the distribution of the fitted correlations. All parameters on the first diagonal
next to the main diagonal of Ω vary around 0.74. The parameters on the second
diagonal vary around 0.46. Thus, the fitted correlation matrixes exhibit a struc-
ture similar to a symmetric Toeplitz matrix or or even close to the correlation
matrix of a AR-process.
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FIGURE 1. Nonlinear effects for all lead times. Left: fi,cc(yearday) contributing
to ηµi. Right: gi,cc(yearday) contributing to ησi.
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FIGURE 2. Fitted correlation coefficients ρij for all days in 2016. Each
box-and-whisker plot indicates the distribution of one correlation parameter over
all sample cases.

The range indicated by the box-and-whisker plots (Fig. 2) suggests that the values
of the intercepts γij,0 are more important for determining the structure of the
correlation matrix than the coefficients of the linear terms, γij,1. Thus, only a
small part of the correlation structure modeled by the numerical ensemble can
be retained by the statistical model.
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FIGURE 3. Boosting paths for the coefficients of the predictors of the correlation
parameters on the rhogit scale.

Figure 3 illustrates how the values of the coefficients γij,0 develop during the
iterative boosting procedure. The intercepts γij,0 are selected before the γij,1 are
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selected. However, after 15000–25000 iterations the values of the intercepts start
dropping, which might be caused by an overfitting of the location parameter µi.
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FIGURE 4. Out-of-sample scoring. Left: continuous rank probability score
(CRPS) for univariate NGR models and marginal predictive distributions of the
boosted MVN model. Right: energy score (ES) of the NGR-ECC and the boosted
MVN.

Figure 4 compares the performance of the proposed method to the performance
obtained by the state-of-the-art method NGR-ECC. The NGR models are also
fitted via boosting. The marginal predictive distributions of the boosted MVN
model are compared to NGR models fitted for every single lead time separately
via the continuous ranked probability score (CRPS, Gneiting and Raftery, 2007).
The left panel of Figure 4 reveals that the two models perform equally well
with respect to their marginal distributions. The multivariate performance of the
models is assessed in terms of the energy score (ES, Gneiting and Raftery, 2007).
The boosted MVN outperforms the NGR-ECC in our case (Figure 4, right).

4 Conclusions

This study suggests to fit multivariate Gaussian distributions via gradient boost-
ing, where additive predictors can be defined for all location, scale and correlation
parameters. A case study in the field of weather forecasting shows promising re-
sults.

Further investigations are needed to fully understand the potential of boosting
MVN with additive predictors. There are alternative ways to parameterize the
correlation matrix, i.e., modeling the parameters of its inverse or its Cholesky
decomposition (Pourahmadi, 2011).

In the present case one could assume an AR-process among the response variable
as they are temporally ordered. This kind of parameterization is implicated by the
findings in this study (cf. Fig. 2). However, more research is needed to examine
whether a parsimonious or flexible parameterization is superior in this kind of
application.

Depending on the problem changing the parameterization can have an effect on
the required iterations until convergence of the boosting algorithm, and could
yield different results when a shrunken version of the model is selected.
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Abstract: Most nonparametric Bayesian approaches use Whittle’s likelihood to
estimate the spectral density as the main nonparametric characteristic of sta-
tionary time series, as e.g. Choudhuri et al. (2004) and Rosen et al (2012). But
as shown in Contreras-Cristan et al. (2006), the loss of efficiency of the non-
parametric approach using Whittle’s likelihood can be substantial. We show that
the Whittle likelihood can be regarded as a special case of a nonparametrically
corrected parametric likelihood which gives rise to a robust and more efficient
Bayesian nonparametric spectral density estimate based on a generalized Whit-
tle likelihood. Its frequentist properties are investigated in a simulation study.
Applications to LIGO gravitational wave data and the El Niño Southern Oscil-
lation phenomenon will be described.

Keywords: Bayesian nonparametrics; stationary time series; spectral density
estimation; Bernstein polynomial prior; gravitational waves.

1 Introduction

Most Bayesian nonparametric approaches to time series analysis are based on
Whittle’s likelihood approximation (Whittle, 1957), as e.g. Choudhuri et al.
(2004) and Rosen et al. (2012). We will show that the Whittle likelihood can be
regarded as the likelihood of a parametric working model, namely iid Gaussian,
which has been nonparametrically corrected in the frequency domain. Borrowing
an idea from a periodogram bootstrap for time series in Kreiss and Paparoditis
(2003), we propose a generalization of the Whittle likelihood that uses a more
realistic parametric working model, e.g. an AR(p) model, again nonparametri-
cally corrected in the frequency domain and suggest a Bayesian semi-parametric
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