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Motivation

Distributional:
® Specify the complete probability distribution (location, scale, shape, ...).

Tree:
e Automatic detection of steps and abrupt changes.

® Capture non-linear and non-additive effects and interactions.

Forest:
® Smoother effects.
® Stabilization and regularization of the model.
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Distributional trees

DGP: Y | X =x ~ N(u(x),0?(x))
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Distributional trees

DGP: Y | X =x ~ N(u(x),0%(x))

5/29



Distributional trees

Model: disttree(y ~ x)
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Distributional trees

Model: disttree(y ~ x)
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Learning distributional trees and forests

Tree:

@ Fit global distributional model D(Y; 6): J\
Estimate 6 via maximum likelihood
0 = argmaxgeo Y11 ((6; i) X < p/ \X >p

@ Test for associations/instabilities of the scores
%(@;y,-) and each covariate X;. A N

© Split along the covariate X with strongest association or instability and at
breakpoint p with highest improvement in log-likelihood.

@ Repeat steps 1-3 recursively until some stopping criterion
is met, yielding B subgroups B, withb=1,...,B.

Forest: Ensemble of T trees.
® Bootstrap or subsamples.
® Random input variable sampling.
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Adaptive local likelihood estimation

Parameter estimator for a global

model with learning data {y;}i=1...n:
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Adaptive local likelihood estimation

Parameter estimator for an adaptive local
model with learning data {(y;, X;) }i=1

-----

= argmaxz wi(x) - £(0; yi)
0c© i—1

Weights:

W,base(x) =1

B
Wltree(x) = Z/ ((xj € Bp) A (x € Bp))
b=1

T Bt
1

Wit (x) = =D D I(xi € Bp) A (x € By))
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Weather forecasting

Goal:
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Data:
e X: State of the atmosphere now (temperature, precipitation, wind, ...).
® Y: State of the atmosphere in the future (hours, days, weeks, ...).
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Weather forecasting

Goal:
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Two stages:
® Physical model: Numerical weather prediction (NWP).
e Statistical model: Model output statistics (MOS).
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Weather forecasting

NWP:
® Based on a physical model.
® Massive numerical simulation of atmospheric processes.
* Here: Global model on a 50 x 50km? grid.

Problem: Uncertain initial conditions, unresolved processes.

Solution: Ensemble of simulation runs under perturbed conditions.
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Weather forecasting
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Weather forecasting

Airport

Global Forecast System (GFS) Ensemble Forecast for Innsbruck

t initialized 2018-03-13 00:00 UTC

Forecas

i

w_ ﬁw_\..&‘

,.“ ,w._'
i

/

: Il
AN
........... mﬁ%

ST S S-  GI-
[D.] @inreladwal

S¢ ST S 0

[yg/ww] urey

Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20 Mar 21 Mar 22

Mar 14

13/29



Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.
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Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.

Observation data: National Hydrographical Service.
® Daily 24h precipitation sums from July over 28 years (1985-2012).
® 95 observation stations in Tyrol, Austria.

NWP: Global Ensemble Forecast System.

® Model outputs: Precipitation, temperature, air pressure, convective
available potential energy, downwards short wave radiation flux, ...

® 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

(precipitation)Ts ~ cA/ (1, 02)
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Precipitation forecasting

Application for one station: Axams.
® Learn forest model on data from 24 years (1985-2008).
® Evaluate on 4 years (2009-2012). Here: July 24.

Density
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Precipitation forecasting

Application for one station: Axams.
® |earn forest model on data from 24 years.
® Evaluate on 4 years.
® 10 times 7-fold cross validation.

Benchmark: Against other heteroscedastic censored Gaussian models.
® Ensemble MOS: Linear predictors using only total precipitation.

® Prespecified GAMLSS: Variable selection based on expert knowledge.

® Boosted GAMLSS: Automatic variable selection.

Evaluation: Continuous ranked probability skill score.
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Precipitation forecasting

Cross validation (with reference model EMOS)
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Precipitation forecasting

Application for all 95 stations:
® Learn forest model on data from 24 years (1985-2008).
® Evaluate on 4 years (2009-2012).
® Benchmark against other heteroscedastic censored Gaussian models.
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Precipitation forecasting

Stations in Tyrol
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Wind forecasting

Goal: Nowcasting (1-3 hours ahead) of wind direction at Innsbruck Airport.
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Wind forecasting

Goal: Nowcasting (1-3 hours ahead) of wind direction at Innsbruck Airport.

Challenges:
e Circular response in [0°,360°) with 0° = 360°.
® Possibly abrupt changes due to geographical position.
® NWP outputs are less useful due to short lead time.

20/29



Wind forecasting
Goal: Nowcasting (1-3 hours ahead) of wind direction at Innsbruck Airport.

Challenges:
e Circular response in [0°,360°) with 0° = 360°.
® Possibly abrupt changes due to geographical position.
® NWP outputs are less useful due to short lead time.

Inputs: Observation data only (41,979 data points).
® 4 stations at Innsbruck Airport, 6 nearby weather stations.

® Base variables: Wind direction, wind (gust) speed, temperature, (reduced)
air pressure, relative humidity.

® 260 covariates based on means/minima/maxima, temporal changes, spatial
differences towards the airport.
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Wind forecasting
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Wind forecasting

Distribution assumption: Von Mises.
e Circular normal distribution.
® Location parameter u € [0, 27).

® Concentration parameter x > 0. —r ‘

. T Hm' L ’
0 /2 n 3n/2 on

Log-likelihood: y < [0,27) and parameter vector 6 = (u, k).

1
£(0;y) = log { 27lo() e"c°s(y‘”)}

where ly(r) is the modified Bessel function of the first kind and order 0.
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Wind forecasting

<180 >180

<109 >109

>0

Node 4 (n = 2496) Node 5 (n = 5980) Node 7 (n = 2057) Node 8 (n = 3548) Node 10 (n = 3891) Node 12 (n = 6992) Node 13 (n = 4406)
mu =93, kappa=0.00021  mu =83, kappa =0.00068  mu = 160, kappa = 0.00019  mu = 130, kappa =0.00054  mu = 250, kappa = 0.00027  mu = 260, kappa = 0.00083  mu = 260, kappa = 0.0011

SUEY ©

IN
o

N

®

Q

23/29



Wind forecasting

Benchmark: Against other naive and circular models.
® Climatology: Without covariates.
® Persistency: Based on current wind direction.
e Circular GLM: Based on current wind speed and wind vectors (u, v).
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Wind forecasting

Evaluation: CRPS skill score for 1-hourly predictions (5-fold cross validation).
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Wind forecasting

Evaluation: CRPS skill score for 3-hourly predictions (5-fold cross validation).
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Transformation models

Alternative: When no obvious classic distribution assumption is available.
Advantages:

® Does not require specification of distribution family.
® More flexible framework.

Distribution function:
F(y;0) = ®(agsa(y)'0)

° aBs,d(y)TG is a smooth, monotone Bernstein polynomial of degree d.
* d =1 corresponds to N (u, o?).
e d =5 is surprisingly flexible.

Example: Body Mass Index explained by lifestyle factors (Switzerland).
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Transformation models
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Software

Software: disttree and circtree available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/

Main functions:

distfit Distributional fits (ML, gamlss.family/custom list).

No covariates.
disttree Distributional trees (ctree/mob + distfit).
Covariates as partitioning variables.
distforest Distributional forests (ensemble of disttrees).
Covariates as partitioning variables.

Correspondingly: circtree, circforest
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