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Motivation

Distributional:

• Specify the complete probability distribution (location, scale, shape, . . . ).

Tree:

• Automatic detection of steps and abrupt changes.

• Capture non-linear and non-additive effects and interactions.

Forest:

• Smoother effects.

• Stabilization and regularization of the model.
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Distributional trees

DGP: Y | X = x ∼ N (µ(x), σ2(x))
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Distributional trees

DGP: Y | X = x ∼ N (µ(x), σ2(x))

x
1

≤ 0.4 > 0.4

n = 200
   True parameters:   

µ = 4
σ = 1

2

x
3

≤ 0.8 > 0.8

n = 200
   True parameters:   

µ = 12
σ = 3

4
n = 100

   True parameters:   
µ = 4
σ = 3

5
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Distributional trees

Model: disttree(y ~ x)

x
p < 0.001

1

≤ 0.397 > 0.397

n = 200
Estimated parameters:

µ = 4.00
σ = 0.99

2

x
p < 0.001

3

≤ 0.8 > 0.8

n = 201
Estimated parameters:

µ = 12.01
σ = 3.05

4
n = 99

Estimated parameters:
µ = 3.91
σ = 2.92

5
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Distributional trees

Model: disttree(y ~ x)

x
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Node 2 (n = 200)
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Distributional trees

Model: disttree(y ~ x)

x
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Learning distributional trees and forests

Tree:

1 Fit global distributional model D(Y; θ):
Estimate θ̂ via maximum likelihood
θ̂ = argmaxθ∈Θ

∑n
i=1 `(θ; yi)

2 Test for associations/instabilities of the scores
∂`
∂θ (θ̂; yi) and each covariate Xi.

YD(Y; θ̂)

? ?Y1 Y2

X ≤ p X > p

D(Y1; θ̂1) D(Y2; θ̂2)

X ≤ p X > p

3 Split along the covariate X with strongest association or instability and at
breakpoint p with highest improvement in log-likelihood.

4 Repeat steps 1–3 recursively until some stopping criterion
is met, yielding B subgroups Bb with b = 1, . . . ,B.

Forest: Ensemble of T trees.
• Bootstrap or subsamples.
• Random input variable sampling.
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• Random input variable sampling.
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Adaptive local likelihood estimation

Parameter estimator for a global
model with learning data {yi}i=1,...,n :

θ̂

(x)

= argmax
θ∈Θ

n∑
i=1

wi(x) ·

`(θ; yi)

Weights:

wbase
i (x) = 1

wtree
i (x) =

B∑
b=1

I((xi ∈ Bb) ∧ (x ∈ Bb))

wforest
i (x) =

1

T

T∑
t=1

Bt∑
b=1

I((xi ∈ Bt
b) ∧ (x ∈ Bt

b))
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Weather forecasting

Goal:

natureX Y

2018-03-15 2018-03-16

Data:

• X: State of the atmosphere now (temperature, precipitation, wind, . . . ).

• Y: State of the atmosphere in the future (hours, days, weeks, . . . ).
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Weather forecasting

Goal:

nature

X Y

2018-03-15 2018-03-16

Two stages:

• Physical model: Numerical weather prediction (NWP).

• Statistical model: Model output statistics (MOS).
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Weather forecasting

NWP:

• Based on a physical model.

• Massive numerical simulation of atmospheric processes.

• Here: Global model on a 50× 50km2 grid.

Problem: Uncertain initial conditions, unresolved processes.

Solution: Ensemble of simulation runs under perturbed conditions.
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Weather forecasting
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Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.

Observation data: National Hydrographical Service.
• Daily 24h precipitation sums from July over 28 years (1985–2012).
• 95 observation stations in Tyrol, Austria.

NWP: Global Ensemble Forecast System.
• Model outputs: Precipitation, temperature, air pressure, convective

available potential energy, downwards short wave radiation flux, . . .
• 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

(precipitation)
1

1.6 ∼ cN (µ, σ2)
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Precipitation forecasting

Application for one station: Axams.
• Learn forest model on data from 24 years (1985–2008).
• Evaluate on 4 years (2009–2012). Here: July 24.
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Precipitation forecasting

Application for one station: Axams.

• Learn forest model on data from 24 years.

• Evaluate on 4 years.

• 10 times 7-fold cross validation.

Benchmark: Against other heteroscedastic censored Gaussian models.

• Ensemble MOS: Linear predictors using only total precipitation.

• Prespecified GAMLSS: Variable selection based on expert knowledge.

• Boosted GAMLSS: Automatic variable selection.

Evaluation: Continuous ranked probability skill score.
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Precipitation forecasting
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Precipitation forecasting

Application for all 95 stations:

• Learn forest model on data from 24 years (1985–2008).

• Evaluate on 4 years (2009–2012).

• Benchmark against other heteroscedastic censored Gaussian models.

18/29



Precipitation forecasting
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Wind forecasting

Goal: Nowcasting (1–3 hours ahead) of wind direction at Innsbruck Airport.

Challenges:

• Circular response in [0◦,360◦) with 0◦ = 360◦.

• Possibly abrupt changes due to geographical position.

• NWP outputs are less useful due to short lead time.

Inputs: Observation data only (41,979 data points).

• 4 stations at Innsbruck Airport, 6 nearby weather stations.

• Base variables: Wind direction, wind (gust) speed, temperature, (reduced)
air pressure, relative humidity.

• 260 covariates based on means/minima/maxima, temporal changes, spatial
differences towards the airport.
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Wind forecasting
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Wind forecasting

Distribution assumption: Von Mises.

• Circular normal distribution.

• Location parameter µ ∈ [0,2π).

• Concentration parameter κ > 0.
0 π 2 π 3π 2 2π

Log-likelihood: y ∈ [0,2π) and parameter vector θ = (µ, κ).

`(θ; y) = log

{
1

2πI0(κ)
eκ cos(y−µ)

}
where I0(κ) is the modified Bessel function of the first kind and order 0.
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Wind forecasting
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Wind forecasting

Benchmark: Against other naive and circular models.

• Climatology: Without covariates.

• Persistency: Based on current wind direction.

• Circular GLM: Based on current wind speed and wind vectors (u, v).

24/29



Wind forecasting

Evaluation: CRPS skill score for 1-hourly predictions (5-fold cross validation).
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Wind forecasting

Evaluation: CRPS skill score for 3-hourly predictions (5-fold cross validation).
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Transformation models

Alternative: When no obvious classic distribution assumption is available.

Advantages:

• Does not require specification of distribution family.

• More flexible framework.

Distribution function:
F(y; θ) = Φ(aBs,d(y)>θ)

• aBs,d(y)>θ is a smooth, monotone Bernstein polynomial of degree d.

• d = 1 corresponds to N (µ, σ2).

• d = 5 is surprisingly flexible.

Example: Body Mass Index explained by lifestyle factors (Switzerland).
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Transformation models
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Software

Software: disttree and circtree available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/

Main functions:

distfit Distributional fits (ML, gamlss.family/custom list).

No covariates.

disttree Distributional trees (ctree/mob + distfit).

Covariates as partitioning variables.

distforest Distributional forests (ensemble of disttrees).

Covariates as partitioning variables.

Correspondingly: circtree, circforest
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