\square universität innsbruck

Distributional Regression Forests for Probabilistic Modeling and Forecasting

Achim Zeileis, Lisa Schlosser, Moritz N. Lang, Torsten Hothorn, Georg J. Mayr, Reto Stauffer
http://www.partykit.org/partykit/

Motivation

Motivation

LM, GLM

1m
glm

Motivation

LM, GLM

GAM
mgCV
VGAM

Motivation

LM, GLM
lm
glm

GAM
mgcv
VGAM

GAMLSS
gamlss
mgcv
VGAM
gamboostLSS bamlss

Motivation

Regression tree

rpart
party (kit)

Motivation

Regression tree

rpart
party (kit)

Random forest

randomForest ranger party(kit)

Motivation

Motivation

Distributional:

- Specify the complete probability distribution (location, scale, shape, ...).

Tree:

- Automatic detection of steps and abrupt changes.
- Capture non-linear and non-additive effects and interactions.

Forest:

- Smoother effects.
- Stabilization and regularization of the model.

Distributional trees

$$
\text { DGP: } Y \mid X=x \sim \mathcal{N}\left(\mu(x), \sigma^{2}(x)\right)
$$

Distributional trees

$$
\text { DGP: } Y \mid X=x \sim \mathcal{N}\left(\mu(x), \sigma^{2}(x)\right)
$$

Distributional trees

Model: disttree (y ~ x)

Distributional trees

Model: disttree (y ~ x)

Distributional trees

Model: disttree (y ~ x)

Learning distributional trees and forests

Tree:

Learning distributional trees and forests

Tree:

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood
$\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood
$\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood

$\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$: Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood
$\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores
 $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each covariate X_{i}.
(3) Split along the covariate X with strongest association or instability and at breakpoint p with highest improvement in log-likelihood.

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores
 $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each covariate X_{i}.
(3) Split along the covariate X with strongest association or instability and at breakpoint p with highest improvement in log-likelihood.

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores
 $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each covariate X_{i}.
(3) Split along the covariate X with strongest association or instability and at breakpoint p with highest improvement in log-likelihood.
(4) Repeat steps 1-3 recursively until some stopping criterion is met, yielding B subgroups \mathcal{B}_{b} with $b=1, \ldots, B$.

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores
 $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each covariate X_{i}.
(3) Split along the covariate X with strongest association or instability and at breakpoint p with highest improvement in log-likelihood.
(4) Repeat steps 1-3 recursively until some stopping criterion is met, yielding B subgroups \mathcal{B}_{b} with $b=1, \ldots, B$.

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$:

Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each covariate X_{i}.

(3) Split along the covariate X with strongest association or instability and at breakpoint p with highest improvement in log-likelihood.
(4) Repeat steps 1-3 recursively until some stopping criterion is met, yielding B subgroups \mathcal{B}_{b} with $b=1, \ldots, B$.

Learning distributional trees and forests

Tree:

(1) Fit global distributional model $\mathcal{D}(Y ; \theta)$: Estimate $\hat{\theta}$ via maximum likelihood $\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(\theta ; y_{i}\right)$
(2) Test for associations/instabilities of the scores $\frac{\partial \ell}{\partial \theta}\left(\hat{\theta} ; y_{i}\right)$ and each covariate X_{i}.

(3) Split along the covariate X with strongest association or instability and at breakpoint p with highest improvement in log-likelihood.
(4) Repeat steps 1-3 recursively until some stopping criterion is met, yielding B subgroups \mathcal{B}_{b} with $b=1, \ldots, B$.

Forest: Ensemble of T trees.

- Bootstrap or subsamples.
- Random input variable sampling.

Adaptive local likelihood estimation

Parameter estimator for a global

 model with learning data $\left\{y_{i}\right\}_{i=1, \ldots, n}$:$$
\hat{\theta} \quad=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \quad \ell\left(\theta ; y_{i}\right)
$$

Adaptive local likelihood estimation

Parameter estimator for a global

 model with learning data $\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1, \ldots, n}$:$$
\hat{\theta}(\mathbf{x})=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} w_{i}(\mathbf{x}) \cdot \ell\left(\theta ; y_{i}\right)
$$

Adaptive local likelihood estimation

Parameter estimator for a global

 model with learning data $\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1, \ldots, n}$:$$
\hat{\theta}(\mathbf{x})=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} w_{i}(\mathbf{x}) \cdot \ell\left(\theta ; y_{i}\right)
$$

Weights:

$$
w_{i}^{\text {base }}(\mathbf{x})=1
$$

Adaptive local likelihood estimation

Parameter estimator for an adaptive local

 model with learning data $\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1, \ldots, n}$:$$
\hat{\theta}(\mathbf{x})=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} w_{i}(\mathbf{x}) \cdot \ell\left(\theta ; y_{i}\right)
$$

Weights:

$$
\begin{aligned}
& w_{i}^{\text {base }}(\mathbf{x})=1 \\
& w_{i}^{\text {tree }}(\mathbf{x})=\sum_{b=1}^{B} I\left(\left(\mathbf{x}_{i} \in \mathcal{B}_{b}\right) \wedge\left(\mathbf{x} \in \mathcal{B}_{b}\right)\right)
\end{aligned}
$$

Adaptive local likelihood estimation

Parameter estimator for an adaptive local

 model with learning data $\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1, \ldots, n}$:$$
\hat{\theta}(\mathbf{x})=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} w_{i}(\mathbf{x}) \cdot \ell\left(\theta ; y_{i}\right)
$$

Weights:

$$
\begin{aligned}
w_{i}^{\text {base }}(\mathbf{x}) & =1 \\
w_{i}^{\text {tree }}(\mathbf{x}) & =\sum_{b=1}^{B} I\left(\left(\mathbf{x}_{i} \in \mathcal{B}_{b}\right) \wedge\left(\mathbf{x} \in \mathcal{B}_{b}\right)\right) \\
w_{i}^{\text {forest }}(\mathbf{x}) & =\frac{1}{T} \sum_{t=1}^{T} \sum_{b=1}^{B^{t}} I\left(\left(\mathbf{x}_{i} \in \mathcal{B}_{b}^{t}\right) \wedge\left(\mathbf{x} \in \mathcal{B}_{b}^{t}\right)\right)
\end{aligned}
$$

Weather forecasting

Goal:

Data:

- X: State of the atmosphere now (temperature, precipitation, wind, ...).
- Y: State of the atmosphere in the future (hours, days, weeks, ...).

Weather forecasting

Goal:

Data:

- X: State of the atmosphere now (temperature, precipitation, wind, ...).
- Y: State of the atmosphere in the future (hours, days, weeks, ...).

Weather forecasting

Goal:

Two stages:

- Physical model: Numerical weather prediction (NWP).
- Statistical model: Model output statistics (MOS).

Weather forecasting

NWP:

- Based on a physical model.
- Massive numerical simulation of atmospheric processes.
- Here: Global model on a $50 \times 50 \mathrm{~km}^{2}$ grid.

Problem: Uncertain initial conditions, unresolved processes.
Solution: Ensemble of simulation runs under perturbed conditions.

Weather forecasting

Global Forecast System (GFS) Ensemble Forecast for Innsbruck, Airport Forecast initialized 2018-03-13 00:00 UTC

Weather forecasting

Global Forecast System (GFS) Ensemble Forecast for Innsbruck, Airport Forecast initialized 2018-03-13 00:00 UTC

Weather forecasting

Global Forecast System (GFS) Ensemble Forecast for Innsbruck, Airport Forecast initialized 2018-03-13 00:00 UTC

Weather forecasting

Global Forecast System (GFS) Ensemble Forecast for Innsbruck, Airport Forecast initialized 2018-03-13 00:00 UTC

Weather forecasting

Global Forecast System (GFS) Ensemble Forecast for Innsbruck, Airport Forecast initialized 2018-03-13 00:00 UTC

$\begin{array}{lllllllll}\text { Mar } 14 & \text { Mar 15 } & \text { Mar 16 } & \text { Mar 17 } & \text { Mar 18 } & \text { Mar } 19 & \text { Mar 20 } & \text { Mar 21 } & \text { Mar } 22\end{array}$

Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.

Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.
Observation data: National Hydrographical Service.

- Daily 24 h precipitation sums from July over 28 years (1985-2012).
- 95 observation stations in Tyrol, Austria.

Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.
Observation data: National Hydrographical Service.

- Daily 24 h precipitation sums from July over 28 years (1985-2012).
- 95 observation stations in Tyrol, Austria.

NWP: Global Ensemble Forecast System.

- Model outputs: Precipitation, temperature, air pressure, convective available potential energy, downwards short wave radiation flux, ...
- 80 covariates based on ensemble min/max/mean/standard deviation.

Precipitation forecasting

Goal: Predict daily precipitation amount in complex terrain.
Observation data: National Hydrographical Service.

- Daily 24 h precipitation sums from July over 28 years (1985-2012).
- 95 observation stations in Tyrol, Austria.

NWP: Global Ensemble Forecast System.

- Model outputs: Precipitation, temperature, air pressure, convective available potential energy, downwards short wave radiation flux, ...
- 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

$$
(\text { precipitation })^{\frac{1}{1.6}} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Precipitation forecasting

Application for one station: Axams.

- Learn forest model on data from 24 years (1985-2008).
- Evaluate on 4 years (2009-2012). Here: July 24.

Precipitation forecasting

Application for one station: Axams.

- Learn forest model on data from 24 years.
- Evaluate on 4 years.
- 10 times 7 -fold cross validation.

Benchmark: Against other heteroscedastic censored Gaussian models.

- Ensemble MOS: Linear predictors using only total precipitation.
- Prespecified GAMLSS: Variable selection based on expert knowledge.
- Boosted GAMLSS: Automatic variable selection.

Evaluation: Continuous ranked probability skill score.

Precipitation forecasting

Cross validation (with reference model EMOS)

Precipitation forecasting

Application for all 95 stations:

- Learn forest model on data from 24 years (1985-2008).
- Evaluate on 4 years (2009-2012).
- Benchmark against other heteroscedastic censored Gaussian models.

Precipitation forecasting

Stations in Tyrol

Wind forecasting

Goal: Nowcasting (1-3 hours ahead) of wind direction at Innsbruck Airport.

Wind forecasting

Goal: Nowcasting (1-3 hours ahead) of wind direction at Innsbruck Airport.
Challenges:

- Circular response in $\left[0^{\circ}, 360^{\circ}\right)$ with $0^{\circ}=360^{\circ}$.
- Possibly abrupt changes due to geographical position.
- NWP outputs are less useful due to short lead time.

Wind forecasting

Goal: Nowcasting (1-3 hours ahead) of wind direction at Innsbruck Airport.

Challenges:

- Circular response in $\left[0^{\circ}, 360^{\circ}\right)$ with $0^{\circ}=360^{\circ}$.
- Possibly abrupt changes due to geographical position.
- NWP outputs are less useful due to short lead time.

Inputs: Observation data only (41,979 data points).

- 4 stations at Innsbruck Airport, 6 nearby weather stations.
- Base variables: Wind direction, wind (gust) speed, temperature, (reduced) air pressure, relative humidity.
- 260 covariates based on means/minima/maxima, temporal changes, spatial differences towards the airport.

Wind forecasting

Wind forecasting

Distribution assumption: Von Mises.

- Circular normal distribution.
- Location parameter $\mu \in[0,2 \pi)$.
- Concentration parameter $\kappa>0$.

Log-likelihood: $y \in[0,2 \pi)$ and parameter vector $\theta=(\mu, \kappa)$.

$$
\ell(\theta ; y)=\log \left\{\frac{1}{2 \pi I_{0}(\kappa)} e^{\kappa \cos (y-\mu)}\right\}
$$

where $I_{0}(\kappa)$ is the modified Bessel function of the first kind and order 0.

Wind forecasting

Distribution assumption: Von Mises.

- Circular normal distribution.
- Location parameter $\mu \in[0,2 \pi)$.
- Concentration parameter $\kappa>0$.

Log-likelihood: $y \in[0,2 \pi)$ and parameter vector $\theta=(\mu, \kappa)$.

$$
\ell(\theta ; y)=\log \left\{\frac{1}{2 \pi I_{0}(\kappa)} e^{\kappa \cos (y-\mu)}\right\}
$$

where $I_{0}(\kappa)$ is the modified Bessel function of the first kind and order 0 .

Wind forecasting

Wind forecasting

Benchmark: Against other naive and circular models.

- Climatology: Without covariates.
- Persistency: Based on current wind direction.
- Circular GLM: Based on current wind speed and wind vectors (u,v).

Wind forecasting

Evaluation: CRPS skill score for 1-hourly predictions (5-fold cross validation).

Wind forecasting

Evaluation: CRPS skill score for 3-hourly predictions (5-fold cross validation).

Transformation models

Alternative: When no obvious classic distribution assumption is available.

Advantages:

- Does not require specification of distribution family.
- More flexible framework.

Distribution function:

$$
F(y ; \theta)=\Phi\left(\mathbf{a}_{B s, d}(y)^{\top} \theta\right)
$$

- $\mathbf{a}_{B s, d}(y)^{\top} \theta$ is a smooth, monotone Bernstein polynomial of degree d.
- $d=1$ corresponds to $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- $d=5$ is surprisingly flexible.

Example: Body Mass Index explained by lifestyle factors (Switzerland).

Transformation models

Software

Software: disttree and circtree available on R-Forge at
https://R-Forge.R-project.org/projects/partykit/

Main functions:

distfit	Distributional fits (ML, gamlss.family/custom list).
	No covariates.
disttree	Distributional trees (ctree/mob + distfit). Covariates as partitioning variables.
distforest	Distributional forests (ensemble of disttrees). Covariates as partitioning variables.

Correspondingly: circtree, circforest

References

Schlosser L, Hothorn T, Stauffer R, Zeileis A (2019). "Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain." The Annals of Applied Statistics, 13(3), 1564-1589. doi:10.1214/19-A0AS1247

Schlosser L, Lang MN, Hothorn T, Mayr GJ, Stauffer R, Zeileis A (2019). "Distributional Trees for Circular Data." Proceedings of the 34th International Workshop on Statistical Modelling, 1, 226-231. https://eeecon.uibk.ac.at/~zeileis/papers/Schlosser+Lang+Hothorn-2019.pdf

Hothorn T, Zeileis A (2017). "Transformation Forests." arXiv 1701.02110, arXiv.org E-Print Archive. http://arxiv.org/abs/1701. 02110

Hothorn T, Hornik K, Zeileis A (2006). "Unbiased Recursive Partitioning: A Conditional Inference Framework." Journal of Computational and Graphical Statistics, 15(3), 651-674. doi:10.1198/106186006X133933

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." Journal of Computational and Graphical Statistics, 17(2), 492-514. doi:10.1198/106186008X319331

Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." Journal of Machine Learning Research, 16, 3905-3909. http://www.jmlr.org/papers/v16/hothorn15a

