Universität Innshruck

Examining Exams Using Rasch Models and Assessment of Measurement Invariance

Achim Zeileis
https://eeecon.uibk.ac.at/~zeileis/

Overview

- Topics
- Large-scale exams
- Item response theory with Rasch model
- Assessment of measurement invariance
- Mathematics 101 exam at Universität Innsbruck
- Classical tests
- Anchor methods
- Score-based tests
- Model-based recursive partitioning
- Finite mixture models
- Discussion

Many collaborators: Hannah Frick, Bettina Grün, Kurt Hornik, Torsten Hothorn, Basil Komboz, Julia Kopf, Friedrich Leisch, Edgar C. Merkle, Carolin Strobl, Nikolaus Umlauf, Ting Wang, Florian Wickelmaier.

Large-scale exams

Motivation:

- Statisticians often teach large lecture courses for other fields.
- Statistics, probability, or mathematics in curricula such as business and economics, social sciences, psychology, etc.
- At WU Wien and Universität Innsbruck: Some courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.

Typical exams:

- Multiple choice or single choice.
- Evaluated and graded automatically.
- Little further examination of results (if any).

Large-scale exams

Potential questions:

- Ability of students.
- Difficulty of exercises (or items).
- Differential item functioning (DIF).
- Unidimensionality.

At WU: Multiple-choice monitor by Ledermüller, Nettekoven, Weiler/Krakovsky.

Here:

- Rasch model for binary single-choice items.
- Assessment of measurement invariance vs. DIF.

IRT with Rasch model

Motivation: Item response theory (IRT) with Rasch model.

- Measure a single latent trait (here: ability in exam).
- Based on binary items $y_{i j}$ (here: solved correctly vs. not).
- Align person's ability $\theta_{i}(i=1, \ldots, n)$ and item's difficulty β_{j} $(j=1, \ldots, m)$ on the same scale.

Model:

$$
\begin{aligned}
\pi_{i j} & =\operatorname{Pr}(\text { person } i \text { solves item } j)=\operatorname{Pr}\left(y_{i j}=1\right) \\
\operatorname{logit}\left(\pi_{i j}\right) & =\theta_{i}-\beta_{j}
\end{aligned}
$$

- Interval scale with arbitrary zero point.
- Fix reference point by zero constraint (e.g., for β_{1} or $\sum_{j} \beta_{j}$).
- Consistent estimation via conditional maximum likelihood.
- Sufficient statistics for θ_{i} : Sum of correct items for person i.

Assessment of measurement invariance

Crucial assumption: Measurement invariance (MI). Otherwise observed differences cannot be reliably attributed to the latent variable that the model purports to measure.

Parameter stability: In parametric models, the MI assumption corresponds to stability of parameters across all possible subgroups.

Inference: The typical approach for assessing MI is

- to split the data into reference and focal groups,
- assess the stability of selected parameters (all or only a subset) across these groups
- by means of standard tests: likelihood ratio (LR), Wald, or Lagrange multiplier (LM or score) tests.

Assessment of measurement invariance

Problems:

- Subgroups have to be formed in advance.
- Continuous variables are often categorized into groups in an ad hoc way (e.g., splitting at the median).
- In ordinal variables the category ordering is often not exploited assessing only if at least one group differs from the others.
- When likelihood ratio or Wald tests are employed, the model has to be fitted to each subgroup which can become numerically challenging and computationally intensive.

Conceivable solutions:

- Score-based tests "along" numerical/ordinal/categorical covariates.
- Recursive partitioning to capture covariate interactions.
- Finite mixture models without covariates.

Mathematics 101 at Universität Innsbruck

Course: Mathematics for first-year business and economics students at Universität Innsbruck.

Format: Biweekly online tests (conducted in OpenOLAT) and two written exams for about 1,000 students per semester.

Here: Individual results from an end-term exam.

- 729 students (out of 941 registered).
- 13 single-choice items with five answer alternatives, covering the basics of analysis, linear algebra, financial mathematics.
- Two groups with partially different item pools (on the same topics). Individual versions of items generated via exams in R.
- Correctly solved items yield 100% of associated points. Items without correct solution can either be unanswered (0%) or with an incorrect answer (-25%). Considered as binary here.

Mathematics 101 at Universität Innsbruck

Variables: In MathExam14W.

- solved: Item response matrix (1/0 coding).
- group: Factor for group.
- tests: Number of previous online exercises solved (out of 26).
- nsolved: Number of exam items solved (out of 13).
- gender, study, attempt, semester, ...

In R: Load package/data and exclude extreme scorers.
R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset (MathExam14W, nsolved > 0 \& nsolved < 13)

Mathematics 101 at Universität Innsbruck

R> plot(mex\$solved)

Rasch model

$$
\begin{aligned}
& \text { R> mr <- raschmodel(mex\$solved) } \\
& \text { R> plot(mr, type = "profile") }
\end{aligned}
$$

Rasch model

R> plot(mr, type = "piplot")

> Person-Item Plot

Classical tests

Of interest: Difference between the two exam groups.
Tests: All χ_{12}^{2} with 95% critical value 21.0.

- LR: 265.0.
- Wald: 249.4.
- LM/Score: 260.8 .

Question: Which items "cause" this DIF?
Answer: Use item-wise Wald tests.

$$
t_{j}=\frac{\hat{\beta}_{j}^{\text {ref }}-\hat{\beta}_{j}^{\text {toc }}}{\sqrt{\widehat{\operatorname{Var}}\left(\hat{\beta}^{\mathrm{ref}}\right)_{j, j}+\widehat{\operatorname{Var}}\left(\hat{\beta}^{\text {toc }}\right)_{j, j}}} .
$$

But: "Anchor" items are needed to align the scales from the two groups.

Classical tests

```
R> plot(mr1, parg = list(ref = 1), ...)
R> plot(mr2, parg = list(ref = 1), ...)
```


Classical tests

```
R> plot(mr1, parg = list(ref = 10), ...)
R> plot(mr2, parg = list(ref = 10), ...)
```


Anchor methods

Goal: Select DIF-free anchor items to be able to identify items truly associated with DIF ("chicken or the egg" dilemma).

Approaches: Classes of anchors with different characteristics.

- All other: All items - except the item currently studied.
- Constant: Predefined number of items (e.g., 1 or 4).
- Forward: Iteratively add items.

Selection: Rank candidate items based on single-anchor DIF tests.

- Number of significant tests.
- Mean test statistic or p-value.
- Mean test statistic or p-value beyond median threshold.

Here: Constant anchor class with 4 items and mean p-value threshold selection. Single-step adjustment of final inference for multiple testing.

Anchor methods

```
R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")
R> plot(ma$final_tests)
Anchor items: 10, 4, 12, 5
```


Score-based tests

Questions:

- Is there further DIF in the two exam groups?
- Is there DIF w.r.t. mathematics ability, e.g., for tests $(0, \ldots, 13, \ldots, 26)$ or nsolved $(1, \ldots, 12)$?

Problem: Numeric variables without predefined subgroups. Hence, many possible patterns of deviation from parameter stability.

Idea: Generalize the LM test.

- Model only has to be fitted once under the MI assumption to the full data set.
- Catpure model deviations along a variable v that is suspected to cause DIF and violate MI.

Score-based tests

Hypotheses: Under MI parameters β do not depend any variable v_{i}. Hence assess for $i=1, \ldots, n$

$$
\begin{aligned}
H_{0}: \boldsymbol{\beta}_{i} & =\boldsymbol{\beta} \\
H_{1}: \boldsymbol{\beta}_{i} & =\boldsymbol{\beta}\left(v_{i}\right)
\end{aligned}
$$

Building block: Casewise model deviations.

- Derivative of the casewise log-likelihood w.r.t. the parameters.
- General measure of model deviation (similar to residuals).

$$
\boldsymbol{s}\left(\boldsymbol{\beta} ; \boldsymbol{y}_{i}\right)=\left(\frac{\partial \ell\left(\boldsymbol{\beta} ; \boldsymbol{y}_{i}\right)}{\partial \beta_{2}}, \ldots, \frac{\partial \ell\left(\boldsymbol{\beta} ; \boldsymbol{y}_{i}\right)}{\partial \beta_{m}}\right)^{\top}
$$

Score-based tests

Special case: Two subgroups resulting from one split point ν.

$$
H_{1}^{*}: \boldsymbol{\beta}_{i}= \begin{cases}\boldsymbol{\beta}^{(A)} & \text { if } v_{i} \leq \nu \\ \boldsymbol{\beta}^{(B)} & \text { if } v_{i}>\nu\end{cases}
$$

Tests: LR/Wald/LM tests can be easily employed if pattern $\boldsymbol{\beta}\left(v_{i}\right)$ is known, specifically for H_{1}^{*} with fixed split point ν.

For unknown split point: Compute LR/Wald/LM tests for each possible split point $v_{1} \leq v_{2} \leq \cdots \leq v_{n}$ and reject if the maximum statistic is large.

Caution: By maximally selecting the test statistic different critical values are required (not from a χ^{2} distribution)!

More generally: Consider a class of tests that assesses whether the model "deviations" $\boldsymbol{s}\left(\hat{\boldsymbol{\beta}} ; \boldsymbol{y}_{i}\right)$ depend on v_{i}.

Score-based tests

Fluctuation process: Capture fluctuations in the cumulative sum of the scores ordered by the variable v.

$$
\boldsymbol{B}(t ; \hat{\boldsymbol{\beta}})=\hat{\boldsymbol{I}}^{-1 / 2} n^{-1 / 2} \sum_{i=1}^{\lfloor n \cdot t\rfloor} \boldsymbol{s}\left(\hat{\boldsymbol{\beta}} ; \boldsymbol{y}_{(i)}\right) \quad(0 \leq t \leq 1)
$$

- $\hat{\boldsymbol{l}}$ - estimate of the information matrix.
- t - proportion of data ordered by v.
- $\lfloor n \cdot t\rfloor$ - integer part of $n \cdot t$.
- $x_{(i)}$ - observation with the i-th smallest value of the variable v.

Functional central limit theorem: Under H_{0} convergence to a (continuous) Brownian bridge process $\boldsymbol{B}(\cdot ; \hat{\boldsymbol{\beta}}) \xrightarrow{d} \boldsymbol{B}^{0}(\cdot)$, from which critical values can be obtained - either analytically or by simulation.

Score-based tests: Continuous variables

Test statistics: The empirical process can be viewed as a matrix $\boldsymbol{B}(\hat{\boldsymbol{\beta}})_{i j}$ with rows $i=1, \ldots, n$ (observations) and columns $j=1, \ldots, m-1$ (parameters). This can be aggregated to scalar test statistics along continuous the variable v.

$$
\begin{aligned}
D M & =\max _{i=1, \ldots, n j=1, \ldots, m-1} \max _{\boldsymbol{B}(\hat{\boldsymbol{\beta}})_{i j} \mid} \\
C V M & =n^{-1} \sum_{i=1, \ldots, n} \sum_{j=1, \ldots, m-1} \boldsymbol{B}(\hat{\boldsymbol{\beta}})_{i j}^{2} \\
\max L M & =\max _{i=i, \ldots, \bar{\imath}}\left\{\frac{i}{n}\left(1-\frac{i}{n}\right)\right\}^{-1} \sum_{j=1, \ldots, m-1} \boldsymbol{B}(\hat{\boldsymbol{\beta}})_{i j}^{2}
\end{aligned}
$$

Critical values: Analytically for DM. Otherwise by direct simulation or further refined simulation techniques.

Score-based tests: Ordinal variables

Test statistics: Aggregation along ordinal variables v with c categories.

$$
\begin{aligned}
W D M_{0} & =\max _{i \in\left\{i_{1}, \ldots, i_{c-1}\right\}}\left\{\frac{i}{n}\left(1-\frac{i}{n}\right)\right\}^{-1 / 2} \max _{j=1, \ldots, m-1}\left|\boldsymbol{B}(\hat{\boldsymbol{\beta}})_{i j}\right|, \\
\max L M_{o} & =\max _{i \in\left\{i_{1}, \ldots, i_{c-1}\right\}}\left\{\frac{i}{n}\left(1-\frac{i}{n}\right)\right\}^{-1} \sum_{j=1, \ldots, m-1} \boldsymbol{B}(\hat{\boldsymbol{\beta}})_{i j}^{2},
\end{aligned}
$$

where i_{1}, \ldots, i_{c-1} are the numbers of observations in each category.
Critical values: For $W D M_{o}$ directly from a multivariate normal distribution. For max $L M_{o}$ via simulation.

Score-based tests: Categorical variables

Test statistic: Aggregation within the c (unordered) categories of v.

Critical values: From a χ^{2} distribution (as usual).
Asymptotically equivalent: LR test.

Score-based tests

Here: Test for DIF along tests in group 1 with max $L M$ test (continuous vs. ordinal).

Result: Clear evidence for DIF. Students that performed poorly in the previous online tests have a different item profile.

```
R> library("strucchange")
R> mex1 <- subset(mex, group == 1)
R> sctest(mr1, order.by = mex1$tests, vcov = "info",
+ functional = "maxLM")
            M-fluctuation test
data: mr1
f(efp) = 40.365, p-value = 0.002508
R> sctest(mr1, order.by = mex1$tests, vcov = "info",
+ functional = "maxLMo")
    M-fluctuation test
data: mr1
f(efp) = 35.543, p-value = 0.003961
```


Score-based tests

M-fluctuation test

Score-based tests

M-fluctuation test

Score-based tests

M-fluctuation test

Recursive partitioning

Idea: Apply tests recursively.

- Asess all covariates of interest using Bonferroni adjustment.
- Split w.r.t. covariate with smallest significant p-value.
- Select split point by maximizing the log-likelihood.
- Continue until there are no more significant instabilities (or the sample is too small).

Here: Treat numeric variables with few levels as ordinal. Simulate p-values for max $L M_{o}$ test.

```
R> library("psychotree")
```

R> mex\$tests <- ordered(mex\$tests)
R> mex\$nsolved <- ordered(mex\$nsolved)
R> mex\$attempt <- ordered(mex\$attempt)
R> mex\$semester <- ordered(mex\$semester)
$\mathrm{R}>\mathrm{mrt}$ <- raschtree(solved ~ group + tests + nsolved + gender +
$+\quad$ attempt + study + semester, data $=$ mex,

+ vcov = "info", minsize = 50, ordinal = "L2", nrep = 1e5)

Recursive partitioning

Finite mixture models

Question: How to detect DIF without covariate information (e.g., in group 1 without tests)?

Answer: Finite mixture of Rasch models with $k=1, \ldots, K$ components. Maximize finite mixture likelihood via EM w.r.t. component-specific weights ω_{k} and item difficulties $\boldsymbol{\beta}^{(k)}$.

$$
\max _{\boldsymbol{\omega}, \boldsymbol{\beta}^{(1)}, \ldots, \boldsymbol{\beta}^{(K)}} \prod_{i=1}^{n} \sum_{k=1}^{K} \omega_{k} f\left(\boldsymbol{y}_{i} ; \boldsymbol{\beta}^{(k)}\right)
$$

Possible extensions:

- Model selection for the number of components K.
- Concomitant variables for the mixture weights ω.
- Component-specific distributions for the raw scores.

Finite mixture models

Here: 2-component mixture with component-specific raw score distribution (mean-variance specification).

```
R> library("psychomix")
R> mrm <- raschmix(mex1$solved, k = 2, scores = "meanvar")
R> plot(mrm)
```

Result: The "soft" classification found by the mixture model is rather similar to the "hard" split by the tree.

```
R> print(mrm)
Call:
raschmix(formula = mex1$solved, k = 2, scores = "meanvar")
Cluster sizes:
    1 2
    73 235
convergence after 79 iterations
```


Finite mixture models

Discussion

Summary:

- Flexible toolbox for assessing measurement invariance in parametric psychometric models.
- Detecting violations along one (tests), none (mixture), or many (tree) covariates.
- Exploit different scales of the covariates: continuous, ordinal, or categorical.

Here: Probably quickest overview of DIF patterns with Rasch tree.
At UIBK: Resulting "policy" implications.

- Avoid exam groups if at all possible.
- Seemingly equivalent items can function very differently if students focus their learning on well-known parts of the item pool.

Discussion

R packages:

- strucchange provides an object-oriented implementation of the score-based parameter instability tests.
- Model-based recursive partitioning available in partykit.
- Psychometric models that cooperate with strucchange and partykit are provided in psychotools: IRT models (Rasch, partial credit, rating scale), Bradley-Terry, multinomial processing trees.
- Psychometric trees in psychotree.
- Psychometric mixture models in psychomix (based on flexmix plus psychotools).

Discussion

Exams infrastructure: R package exams.

- R for random data generation and computations.
- LATEX or Markdown for text formatting
- Answer types: Single/multiple choice, numeric, string, cloze.

Output:

- PDF - either fully customizable or standardized with automatic scanning/evaluation.
- HTML - either fully customizable or embedded into any of the standard formats below.
- Moodle XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.
- ARSnova, Blackboard, TCExam, WU-Prüfungsserver, ...

Discussion

Discussion

Discussion

References

Frick H, Strobl C, Leisch F, Zeileis A (2012). "Flexible Rasch Mixture Models with Package psychomix." Journal of Statistical Software, 48(7), 1-25. doi:10.18637/jss.v048.i07

Frick H, Strobl C, Zeileis A (2015). "Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications."
Educational and Psychological Measurement. 75(2), 208-234. doi:10.1177/0013164414536183
Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." Journal of Machine Learning Research, 16, 3905-3909. http://www.jmlr.org/papers/v16/hothorn15a.html

Kopf J, Zeileis A, Strobl C (2015). "A Framework for Anchor Methods and an Iterative Forward Approach for DIF Detection." Applied Psychological Measurement, 39(2), 83-103. doi:10.1177/0146621614544195

Kopf J, Zeileis A, Strobl C (2015). "Anchor Selection Strategies for DIF Analysis: Review, Assessment, and New Approaches." Educational and Psychological Measurement, 75(1), 22-56. doi:10.1177/0013164414529792

Merkle EC, Zeileis A (2013). "Tests of Measurement Invariance without Subgroups: A Generalization of Classical Methods." Psychometrika, 78(1), 59-82. doi:10.1007/s11336-012-9302-4

Merkle EC, Fan J, Zeileis A (2014). "Testing for Measurement Invariance with Respect to an Ordinal Variable." Psychometrika, 79(4), 569-584. doi:10.1007/S11336-013-9376-7

Strobl C, Julia Kopf, Zeileis A (2015). "Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model." Psychometrika. 80(2), 289-316. doi:10.1007/s11336-013-9388-3

Wang T, Merkle EC, Zeileis A (2014). "Score-Based Tests of Measurement Invariance: Use in Practice." Frontiers in Psychology, 5(438). doi:10.3389/fpsyg. 2014.00438

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." Journal of Computational and Graphical Statistics, 17(2), 492-514. doi:10.1198/106186008x319331

Zeileis A, Umlauf N, Leisch F (2014). "Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond." Journal of Statistical Software, 58(1), 1-36. doi:10.18637/jss.v058.i01

