

A Toolbox for Manipulating and Assessing Color Palettes

Achim Zeileis, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D. McWhite, Paul Murrell, Reto Stauffer, Claus O. Wilke

http://colorspace.R-Forge.R-project.org/

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Problems: Color vision deficiency.

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Problems: Color vision deficiency. Grayscale.

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Problems: Color vision deficiency. Grayscale. Flashy.

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Problems: Color vision deficiency. Grayscale. Flashy.

Alternative: HCL-based sequential palette.

stark

Map: Influenza severity in Germany (week 8, 2019).

Arbeitsgemeinschaft Source: Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Problems: Color vision deficiency. Grayscale. Flashy.

Alternative: HCL-based sequential palette.

stark

erhöht

deutlich

moderat erhöht

geringfügig erhöbt

normal

erhöht

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau, ...

Problems: Color vision deficiency. Grayscale. Flashy.

Alternative: HCL-based sequential palette.

Need tools for:

- Construction of palettes with better perceptual properties.
- Assessment of color palettes.
- Manipulation of colors.

Need tools for:

- Construction of palettes with better perceptual properties.
- Assessment of color palettes.
- Manipulation of colors.

Because Bob Ross would not approve of this!

BOB ROSS INC.

Color spaces

Origin of the package: Convert colors between various three-dimensional representations of color.

In particular: From the perceptually-based HCL (Hue-Chroma-Luminance) to standard Red-Green-Blue (sRGB, and corresponding hex codes) space.

HCL vs. RGB

HCL: Polar coordinates in CIELUV. Captures perceptual dimensions of the human visual system very well.

HCL vs. RGB

HCL: Polar coordinates in CIELUV. Captures perceptual dimensions of the human visual system very well.

RGB: Motivated by how computers/TVs used to generate and still represent color.

HCL vs. RGB: The End of the Rainbow

HCL vs. RGB: The End of the Rainbow

Qualitative: For categorical information, i.e., where no particular ordering of categories is available. Function: qualitative_hcl().

Qualitative: For categorical information, i.e., where no particular ordering of categories is available. Function: qualitative_hcl().

Sequential: For ordered/numeric information, i.e., where colors go from high to low (or vice versa). Function: sequential_hcl().

Qualitative: For categorical information, i.e., where no particular ordering of categories is available. Function: qualitative_hcl().

Sequential: For ordered/numeric information, i.e., where colors go from high to low (or vice versa). Function: sequential_hcl().

Diverging: For ordered/numeric information around a central neutral value, i.e., where colors diverge from neutral to two extremes. Function: diverging_hcl().

Sequential: Luminance contrast is crucial (dark to light or vice versa).

Blues 2: Single hue. Decreasing chroma with increasing luminance.

Blues 3: Single hue. Triangular chroma to achieve higher luminance contrast.

Blues: Multi hue. Triangular chroma. High luminance contrast.

Diverging: Combine two sequential palettes with balanced chroma/luminance.

Diverging: Combine two sequential palettes with balanced chroma/luminance.

R> hcl_palettes(plot = TRUE)

	BluGrn BluGrn	YIOrBr
	Teal	OrRd
ue)	TealGrn	Oranges
	Emrld	YIGn
	BluYI	YIGnBu
	ag_GrnYI	Reds
	Peach	RdPu
	PinkYl	PuRd
	Burg	Purples
	BurgYI	PuBuGn
	RedOr	PuBu
	OrYel	Greens
	Purp	BuGn
	PurpOr	GnBu
	Sunset	BuPu
	Magenta	Blues
	SunsetDark	Lajolla
	ag_Sunset	Turku
	Brwn Yl	Diverging
	YIOrRd	Blue-Red

Blue-Red 2
Blue-Red 3
Red-Green
Purple-Gree
Purple-Brov
Green-Brow
Blue-Yellow
Blue-Yellow
Green-Orar
Cyan-Mage
Tropic
Broc
Cork
Vik
Berlin
Lisbon
Tofino

Statistical graphics

Base:

- HCL palette functions return hex color vector.
- Typically passed to col = argument of base plotting functions.

ggplot2:

- Scales of type scale_<aesthetic>_<datatype>_<colorscale>().
- <aesthetic> is fill or color/colour.
- <datatype> is discrete or continuous.
- <colorscale> is qualitative, sequential, diverging, Or divergingx.

Statistical graphics: Base

R> q4 <- qualitative_hcl(4, palette = "Dark 3")
R> plot(log(EuStockMarkets), plot.type = "single", col = q4, lwd = 2)
R> legend("topleft", colnames(EuStockMarkets), col = q4, lwd = 3, bty = "n")

Statistical graphics: Base

```
R> ttnc <- margin.table(Titanic, c(1, 4))[, 2:1]
R> spineplot(ttnc, col = sequential_hcl(2, palette = "Purples 3"))
```


Statistical graphics: ggplot2

Statistical graphics: ggplot2

```
R> dsamp <- diamonds[1 + 1:1000 * 50, ]
R> ggplot(dsamp, aes(carat, price, color = cut)) + geom_point() +
+ scale_color_discrete_sequential(palette = "Purples 3", nmax = 6, order = 2:6)
```


Visualization and assessment

Visualizations: Based on vector of colors.

- swatchplot(): Color swatches.
- specplot(): Spectrum of HCL and/or RGB trajectories.
- hclplot(): Trajectories in 2-dimensional HCL space projections.
- demoplot(): Illustrations of typical (and simplified) statistical graphics.

Visualization and assessment: hclplot()

```
R> hclplot(qualitative_hcl(7, palette = "Set 2"))
R> hclplot( sequential_hcl(7, palette = "Blues 3"))
R> hclplot( diverging_hcl(7, palette = "Blue-Red"))
```


Visualization and assessment: demoplot()

```
R> cl <- sequential_hcl(5, palette = "Heat")
R> demoplot(cl, type = "...")
```


Color vision deficiency

Emulate: Color vision deficiencies.

- deutan(): Deuteranopia (green deficient).
- protan(): Protanopia (red deficient).
- tritan(): Tritanopia (blue deficient).

Example: Maunga Whau volcano data.

Color vision deficiency

Approximations of other palettes

ColorBrewer.org: YIGnBu

Approximations of other palettes

Color apps

Facilitate exploration: Graphical user interfaces as shiny apps.

- Palette constructor: choose_palette() or hclwizard() (also in tcltk).
- Color picker: choose_color() Or hcl_color_picker().
- Color vision deficiency emulator: cvd_emulator().

Online versions: http://hclwizard.org/

Color apps: choose_palette() / hclwizard()

Color apps: choose_color() / hcl_color_picker()

Color apps: cvd_emulator()

Base R

In 3.6.0: All prespecified palettes also via grDevices::hcl.colors().

Pastel 1	Blues 2	Red-Blue	Plasma	PinkYI	BrwnYl	PuBuGn	Blue-Red 3	Cork	PuOr
Dark 2	Blues 3	Purple-Orange	Inferno	Burg	VIOrRd	PuBu	Red_Green	Vik	RdBu
		- Change		bulg					
Dark 3	Purples 2	Purple-Yellow	Dark Mint	BurgYI	YIOrBr	Greens	Purple-Green	Berlin	RdGy
Set 2	Purples 3	Blue-Yellow	Mint	RedOr	OrRd	BuGn	Purple-Brown	Lisbon	PiYG
Set 3	Reds 2	Green-Yellow	BluGrn	OrYel	Oranges	GnBu	Green-Brown	Tofino	PRGn
Warm	Reds 3	Red-Yellow	Teal	Purp	YIGn	BuPu	Blue-Yellow 2	ArmyRose	BrBG
Cold	Greens 2	Heat	TealGrn	PurpOr	YIGnBu	Blues	Blue-Yellow 3	Earth	RdYlBu
Harmonic	Greens 3	Heat 2	Emrld	Sunset	Reds	Lajolla	Green–Orange	Fall	RdYlGn
Dynamic	Oslo	Terrain	BluYI	Magenta	RdPu	Turku	Cyan-Magenta	Geyser	Spectral
Grays	Purple-Blue	Terrain 2	ag_GrnYI	SunsetDark	PuRd	Blue-Red	Tropic	TealRose	Zissou 1
Light Grays	Red-Purple	Viridis	Peach	ag_Sunset	Purples	Blue-Red 2	Broc	Temps	Cividis

Base R: Why you might not need our package after all

In 3.6.0: All prespecified palettes also via grDevices::hcl.colors().

Pastel 1	Blues 2	Red-Blue	Plasma	PinkYl	BrwnYl	PuBuGn	Blue-Red 3	Cork	PuOr
Dark 2	Blues 3	Purple-Orange	Inferno	Burg	YIOrRd	PuBu	Red-Green	Vik	RdBu
Dark 3	Purples 2	Purple-Yellow	Dark Mint	BurgYl	YIOrBr	Greens	Purple-Green	Berlin	RdGy
Set 2	Purples 3	Blue-Yellow	Mint	RedOr	OrRd	BuGn	Purple-Brown	Lisbon	PiYG
Set 3	Reds 2	Green-Yellow	BluGrn	OrYel	Oranges	GnBu	Green-Brown	Tofino	PRGn
Warm	Reds 3	Red-Yellow	Teal	Purp	YIGn	BuPu	Blue-Yellow 2	ArmyRose	BrBG
Cold	Greens 2	Heat	TealGrn	PurpOr	YIGnBu	Blues	Blue-Yellow 3	Earth	RdYIBu
Harmonic	Greens 3	Heat 2	Emrld	Sunset	Reds	Lajolla	Green–Orange	Fall	RdYIGn
Dynamic	Oslo	Terrain	BluYl	Magenta	RdPu	Turku	Cyan-Magenta	Geyser	Spectral
Grays	Purple-Blue	Terrain 2	ag_GrnYl	SunsetDark	PuRd	Blue-Red	Tropic	TealRose	Zissou 1
Light Grays	Red-Purple	Viridis	Peach	ag_Sunset	Purples	Blue-Red 2	Broc	Temps	Cividis

Recommendations

Colors and palettes:

- Do not overestimate the effectiveness of color.
- Choose type of palette based on the data to be visualized.
- For areas use light colors (higher luminance, lower chroma).
- For points/lines darker colors are needed (lower luminance, higher chroma).
- For palettes with more colors stronger luminance contrasts are needed.
- Triangular chroma trajectories useful for distinguishing central colors.

Recommendations

Colors and palettes:

- Do not overestimate the effectiveness of color.
- Choose type of palette based on the data to be visualized.
- For areas use light colors (higher luminance, lower chroma).
- For points/lines darker colors are needed (lower luminance, higher chroma).
- For palettes with more colors stronger luminance contrasts are needed.
- Triangular chroma trajectories useful for distinguishing central colors.

R packages:

- colorspace facilitates exploration, manipulation, and assessment.
- HCL approximations of palettes from *RColorBrewer*, *rcartocolor*, *scico*, ...
- Prespecified palettes are also easily available in base R.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2019). "colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes." arXiv:1903.06490, arXiv.org E-Print Archive. http://arxiv.org/abs/1903.06490

Zeileis A, Hornik K, Murrell P (2009). "Escaping RGBland: Selecting Colors for Statistical Graphics." *Computational Statistics & Data Analysis*, **53**, 3259–3270. doi:10.1016/j.csda.2008.11.033.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). "Somewhere over the Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations." *Bulletin of the American Meteorological Society*, **96**(2), 203–216. doi:10.1175/BAMS-D-13-00155.1