

A Toolbox for Manipulating and Assessing Color Palettes

Achim Zeileis, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D. McWhite, Paul Murrell, Reto Stauffer, Claus O. Wilke
http://colorspace.R-Forge.R-project.org/

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

> Problems: Color vision deficiency.

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

Problems: Color vision deficiency. Grayscale.

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

Problems: Color vision deficiency. Grayscale. Flashy.

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

Problems: Color vision deficiency. Grayscale. Flashy.

Alternative: HCL-based sequential palette.

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

Problems: Color vision deficiency. Grayscale. Flashy.

Alternative: HCL-based sequential palette.

Motivation

Map: Influenza severity in Germany (week 8, 2019).

Source: Arbeitsgemeinschaft Influenza, Robert-Koch-Institut.

Reported in: SPIEGEL Online, Tagesschau,...

Problems: Color vision deficiency. Grayscale. Flashy.

Alternative: HCL-based sequential palette.

Motivation

Need tools for:

- Construction of palettes with better perceptual properties.
- Assessment of color palettes.
- Manipulation of colors.

Motivation

Need tools for:

- Construction of palettes with better perceptual properties.
- Assessment of color palettes.
- Manipulation of colors.

Because Bob Ross would not approve of this!

Color spaces

Origin of the package: Convert colors between various three-dimensional representations of color.
In particular: From the perceptually-based HCL (Hue-Chroma-Luminance) to standard Red-Green-Blue (sRGB, and corresponding hex codes) space.

HCL vs. RGB

HCL: Polar coordinates in CIELUV. Captures perceptual dimensions of the human visual system very well.

HCL vs. RGB

HCL: Polar coordinates in CIELUV. Captures perceptual dimensions of the human visual system very well.

RGB: Motivated by how computers/TVs used to generate and still represent color.

HCL vs. RGB: The End of the Rainbow

HCL vs. RGB: The End of the Rainbow

Color palettes: Somewhere over the Rainbow

Qualitative (Set 2)

Sequential (Blues 3)

Diverging (Green-Brown)

Color palettes: Somewhere over the Rainbow

Sequential (Blues 3)

Diverging (Green-Brown)

Qualitative: For categorical information, i.e., where no particular ordering of categories is available. Function: qualitative_hcl().

Color palettes: Somewhere over the Rainbow

Qualitative (Set 2)

Sequential (Blues 3)

Diverging (Green-Brown)

Qualitative: For categorical information, i.e., where no particular ordering of categories is available. Function: qualitative_hcl().

Sequential: For ordered/numeric information, i.e., where colors go from high to low (or vice versa). Function: sequential_hcl().

Color palettes: Somewhere over the Rainbow

Qualitative (Set 2)

Sequential (Blues 3)

Diverging (Green-Brown)

Qualitative: For categorical information, i.e., where no particular ordering of categories is available. Function: qualitative_hcl().

Sequential: For ordered/numeric information, i.e., where colors go from high to low (or vice versa). Function: sequential_hcl().

Diverging: For ordered/numeric information around a central neutral value, i.e., where colors diverge from neutral to two extremes. Function: diverging_hcl().

Color palettes: Somewhere over the Rainbow

Sequential: Luminance contrast is crucial (dark to light or vice versa).

Color palettes: Somewhere over the Rainbow

Blues 2: Single hue. Decreasing chroma with increasing luminance.

Color palettes: Somewhere over the Rainbow

Blues 3: Single hue. Triangular chroma to achieve higher luminance contrast.

Color palettes: Somewhere over the Rainbow

Blues: Multi hue. Triangular chroma. High luminance contrast.

Color palettes: Somewhere over the Rainbow

Diverging: Combine two sequential palettes with balanced chroma/luminance.

Color palettes: Somewhere over the Rainbow

Diverging: Combine two sequential palettes with balanced chroma/luminance.

Color palettes: Somewhere over the Rainbow

R> hcl_palettes (plot = TRUE)

Sequential (single-hue)

Greens 3
Oslo
Sequential (multi-hue)
Purple-Blue
Red-Purple
Red-Blue
Purple-Oral
Purple-Yellc
Blue-Yellow
Green-Yello
Red-Yellow
Heat
Heat 2
Terrain
Terrain 2
Viridis
Plasma
Inferno
Dark Mint
Mint

BluGrn
Teal
TealGrn
Emrld
BluYI
ag_GrnYI
Peach
PinkYI
Burg
BurgYI
RedOr
OrYel
Purp
PurpOr
Sunset
Magenta
SunsetDark
ag_Sunset

Statistical graphics

Base:

- HCL palette functions return hex color vector.
- Typically passed to col = argument of base plotting functions.

ggplot2:

- Scales of type scale_<aesthetic>_<datatype>_<colorscale>().
- <aesthetic> is fill or color/colour.
- <datatype> is discrete or continuous.
- <colorscale> is qualitative, sequential, diverging, or divergingx.

Statistical graphics: Base

R> q4 <- qualitative_hcl(4, palette = "Dark 3")
R> plot (log(EuStockMarkets), plot.type = "single", col = q4, lwd = 2)
R> legend("topleft", colnames(EuStockMarkets), col = q4, lwd = 3, bty = "n")

Statistical graphics: Base

Statistical graphics: ggplot2

Statistical graphics: ggplot2

```
R> dsamp <- diamonds[1 + 1:1000 * 50, ]
R> ggplot(dsamp, aes(carat, price, color = cut)) + geom_point() +
+ scale_color_discrete_sequential(palette = "Purples 3", nmax = 6, order = 2:6)
```


Visualization and assessment

Visualizations: Based on vector of colors.

- swatchplot(): Color swatches.
- specplot(): Spectrum of HCL and/or RGB trajectories.
- hclplot(): Trajectories in 2-dimensional HCL space projections.
- demoplot(): Illustrations of typical (and simplified) statistical graphics.

Visualization and assessment: hclplot()

```
R> hclplot(qualitative_hcl(7, palette = "Set 2"))
R> hclplot( sequential_hcl(7, palette = "Blues 3"))
R> hclplot( diverging_hcl(7, palette = "Blue-Red"))
```


Visualization and assessment: demoplot()

```
R> cl <- sequential_hcl(5, palette = "Heat")
R> demoplot(cl, type = "...")
```

map

pie

heatmap

perspective

scatter

mosaic

spine

lines

Color vision deficiency

Emulate: Color vision deficiencies.

- deutan(): Deuteranopia (green deficient).
- protan(): Protanopia (red deficient).
- tritan(): Tritanopia (blue deficient).

Example: Maunga Whau volcano data.

Color vision deficiency

Original
Desaturated
Deuteranope

sequential_hcl(11, "Blue-Yellow")

Approximations of other palettes

ColorBrewer.org: YIGnBu

Approximations of other palettes

ColorBrewer.org: YIGnBu

Viridis

Color apps

Facilitate exploration: Graphical user interfaces as shiny apps.

- Palette constructor: choose_palette() or hclwizard() (also in tcltk).
- Color picker: choose_color() or hcl_color_picker().
- Color vision deficiency emulator: cvd_emulator().

Online versions: http://hclwizard.org/

Color apps: choose_palette() / hclwizard()

Color apps: choose_color() / hcl_color_picker()

Color apps: cvd_emulator()

Base R

In 3.6.0: All prespecified palettes also via grDevices: :hcl.colors().

Base R: Why you might not need our package after all

In 3.6.0: All prespecified palettes also via grDevices: :hcl.colors().

Recommendations

Colors and palettes:

- Do not overestimate the effectiveness of color.
- Choose type of palette based on the data to be visualized.
- For areas use light colors (higher luminance, lower chroma).
- For points/lines darker colors are needed (lower luminance, higher chroma).
- For palettes with more colors stronger luminance contrasts are needed.
- Triangular chroma trajectories useful for distinguishing central colors.

Recommendations

Colors and palettes:

- Do not overestimate the effectiveness of color.
- Choose type of palette based on the data to be visualized.
- For areas use light colors (higher luminance, lower chroma).
- For points/lines darker colors are needed (lower luminance, higher chroma).
- For palettes with more colors stronger luminance contrasts are needed.
- Triangular chroma trajectories useful for distinguishing central colors.

R packages:

- colorspace facilitates exploration, manipulation, and assessment.
- HCL approximations of palettes from RColorBrewer, rcartocolor, scico, ...
- Prespecified palettes are also easily available in base R.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2019). "colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes." arXiv:1903.06490, arXiv.org E-Print Archive. http://arxiv.org/abs/1903.06490

Zeileis A, Hornik K, Murrell P (2009). "Escaping RGBland: Selecting Colors for Statistical Graphics." Computational Statistics \& Data Analysis, 53, 3259-3270. doi:10.1016/j.csda.2008.11.033.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). "Somewhere over the Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations." Bulletin of the American Meteorological Society, 96(2), 203-216. doi:10.1175/BAMS-D-13-00155.1

