
Applied Econometrics

with

Chapter 7

Programming

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 0 / 35

Programming

Overview

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 1 / 35

Overview

Data analysis typically involves

using or writing software that can perform the desired analysis,

a sequence of commands or instructions that apply the software to
the data, and

documentation of the commands and their output.

Here: Go beyond using off-the-shelf software. Use R tools for

simulation (of power functions),

bootstrapping a regression model,

maximizing a likelihood,

reproducible econometrics using Sweave().

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 2 / 35

Programming

Simulations

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 3 / 35

Simulations

Simulations typically involve 3 steps:

simulating data from some data-generating process (DGP),

evaluating the quantities of interest (e.g., rejection probabilities,
parameter estimates, model predictions), and

iterating the first two steps over a number of different scenarios.

Example: compare power of two tests for autocorrelation

Durbin-Watson test

Breusch-Godfrey test

Recall: Durbin-Watson test is not valid in presence of lagged
dependent variables.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 4 / 35

Simulations

Data-generating processes are

trend: yi = β1 + β2 · i + εi ,

dynamic: yi = β1 + β2 · yi−1 + εi ,

regression coefficients β = (0.25,−0.75)>,

{εi}, i = 1, . . . , n, is stationary AR(1), derived from standard
normal innovations and with lag 1 autocorrelation %.

starting values are 0 (for both y and ε).

Goal: Analyze power properties of both tests (for size α = 0.05) on
both DGPs with

autocorrelations % = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99 and

sample sizes n = 15, 30.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 5 / 35

Simulations

Step 1: DGP with all parameters
R> dgp <- function(nobs = 15, model = c("trend", "dynamic"),
+ corr = 0, coef = c(0.25, -0.75), sd = 1)
+ {
+ model <- match.arg(model)
+ coef <- rep(coef, length.out = 2)
+
+ err <- as.vector(filter(rnorm(nobs, sd = sd), corr,
+ method = "recursive"))
+ if(model == "trend") {
+ x <- 1:nobs
+ y <- coef[1] + coef[2] * x + err
+ } else {
+ y <- rep(NA, nobs)
+ y[1] <- coef[1] + err[1]
+ for(i in 2:nobs)
+ y[i] <- coef[1] + coef[2] * y[i-1] + err[i]
+ x <- c(0, y[1:(nobs-1)])
+ }
+ return(data.frame(y = y, x = x))
+ }

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 6 / 35

Simulations

Step 2: evaluation for a single scenario

R> simpower <- function(nrep = 100, size = 0.05, ...)
+ {
+ pval <- matrix(rep(NA, 2 * nrep), ncol = 2)
+ colnames(pval) <- c("dwtest", "bgtest")
+
+ for(i in 1:nrep) {
+ dat <- dgp(...)
+ pval[i,1] <- dwtest(y ~ x, data = dat,
+ alternative = "two.sided")$p.value
+ pval[i,2] <- bgtest(y ~ x, data = dat)$p.value
+ }
+
+ return(colMeans(pval < size))
+ }

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 7 / 35

Simulations

Step 3: iterated evaluation over all scenarios

R> simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8, 0.9,
+ 0.95, 0.99), nobs = c(15, 30), model = c("trend", "dynamic"),
+ ...)
+ {
+ prs <- expand.grid(corr = corr, nobs = nobs, model = model)
+ nprs <- nrow(prs)
+
+ pow <- matrix(rep(NA, 2 * nprs), ncol = 2)
+ for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1],
+ nobs = prs[i,2], model = as.character(prs[i,3]), ...)
+
+ rval <- rbind(prs, prs)
+ rval$test <- factor(rep(1:2, c(nprs, nprs)),
+ labels = c("dwtest", "bgtest"))
+ rval$power <- c(pow[,1], pow[,2])
+ rval$nobs <- factor(rval$nobs)
+ return(rval)
+ }

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 8 / 35

Simulations

Now set random seed (reproducibility!) and call simulation():

R> set.seed(123)
R> psim <- simulation()

Remarks:

simulation() calls simpower(), and simpower() calls dgp().

Argument ... is simple mechanism for passing on further
arguments to other functions – in simpower() to dgp().

Precision from only 100 replications not sufficient for professional
applications.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 9 / 35

Simulations

Inspect simulation results:

R> tab <- xtabs(power ~ corr + test + model + nobs, data = psim)
R> ftable(tab, row.vars = c("model", "nobs", "test"),
+ col.vars = "corr")

corr 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99
model nobs test
trend 15 dwtest 0.05 0.10 0.21 0.36 0.55 0.65 0.66 0.62

bgtest 0.07 0.05 0.05 0.10 0.30 0.40 0.41 0.31
30 dwtest 0.09 0.20 0.57 0.80 0.96 1.00 0.96 0.98

bgtest 0.09 0.09 0.37 0.69 0.93 0.99 0.94 0.93
dynamic 15 dwtest 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.02

bgtest 0.05 0.01 0.06 0.12 0.17 0.16 0.22 0.24
30 dwtest 0.01 0.02 0.01 0.02 0.00 0.00 0.04 0.21

bgtest 0.02 0.03 0.11 0.39 0.60 0.64 0.60 0.76

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 10 / 35

Simulations

Remarks:

xtabs() helps to turn “data.frame” into “table” that classifies
power outcome by the four design variables.
Use ftable() for printing resulting four-way table (creates “flat”
two-way table).

Supplying corr as column variable and test as last row variable
as table is aimed at comparing power curves

Graphical comparison: using trellis graphics.

R> library("lattice")
R> xyplot(power ~ corr | model + nobs, groups = ~ test,
+ data = psim, type = "b")

Scatterplot for power ~ corr, conditional on combinations of model
and nobs, grouped by test within each panel.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 11 / 35

Simulations

corr

po
w

er

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

●
●

●

●

●

● ●
●

trend
15

● ● ● ● ● ● ● ●

dynamic
15

●

●

●

●

●
●

● ●

trend
30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ● ● ● ● ●
●

●

dynamic
30

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 12 / 35

Simulations

Details:

lattice (Sarkar 2008) implements trellis layouts.

Written in the grid graphics system (Murrell 2005).

More flexible (and more complex) than default R graphics.

xyplot() generates trellis scatterplots.

Results:

Durbin-Watson test somewhat better in trend model. Advantage
over Breusch-Godfrey test diminishes with increasing % and n.

For dynamic model, Durbin-Watson test has almost no power
except for very high correlations. Breusch-Godfrey test performs
acceptably.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 13 / 35

Programming

Bootstrapping a Linear Regression

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 14 / 35

Bootstrapping a Linear Regression

Idea:

Conventional regression output relies on asymptotic
approximations. Often not very reliable in small samples or models
with substantial nonlinearities.

Possible remedy is bootstrapping.

In R:

basic recommended package is boot (Davison and Hinkley, 1997)

function boot() implements classical nonparametric bootstrap
(sampling with replacement) and other resampling techniques.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 15 / 35

Bootstrapping a Linear Regression

Bootstrap and econometrics:

Observational data are standard in economics, hence consider
responses and regressors as random.

Suggests to use pairs bootstrap (resample observations). Method
should give reliable standard errors even under (conditional)
heteroskedasticity.

Example: bootstrap standard errors and confidence intervals for
Journals data (Stock and Watson 2007) by case-based resampling.

Basic regression was

R> data("Journals")
R> journals <- Journals[, c("subs", "price")]
R> journals$citeprice <- Journals$price/Journals$citations
R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 16 / 35

Bootstrapping a Linear Regression

Function boot() takes several arguments, required are

data – the data set,

R – the number of bootstrap replicates,

statistic – a function returning the statistic to be bootstrapped.
Function must take data set and index vector providing the indices
of the observations included in current bootstrap sample.

Example: required statistic given by convenience function

R> refit <- function(data, i)
+ coef(lm(log(subs) ~ log(citeprice), data = data[i,]))

Now call boot():

R> library("boot")
R> set.seed(123)
R> jour_boot <- boot(journals, refit, R = 999)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 17 / 35

Bootstrapping a Linear Regression

R> jour_boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = journals, statistic = refit, R = 999)

Bootstrap Statistics :
original bias std. error

t1* 4.7662 -0.0010560 0.05545
t2* -0.5331 -0.0001606 0.03304

R> coeftest(jour_lm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7662 0.0559 85.2 <2e-16
log(citeprice) -0.5331 0.0356 -15.0 <2e-16

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 18 / 35

Bootstrapping a Linear Regression

R> boot.ci(jour_boot, index = 2, type = "basic")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
boot.ci(boot.out = jour_boot, type = "basic", index = 2)

Intervals :
Level Basic
95% (-0.5952, -0.4665)
Calculations and Intervals on Original Scale

R> confint(jour_lm, parm = 2)

2.5 % 97.5 %
log(citeprice) -0.6033 -0.4628

Results: Conventional and bootstrap standard errors and confidence
intervals (for slope coefficient) are essentially identical, i.e.,
conventional versions valid.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 19 / 35

Bootstrapping a Linear Regression

Remarks:

boot has further functions for resampling, e.g. tsboot() for block
resampling from time series.

Block resampling from time series also via tsbootstrap() from
tseries.

Maximum entropy bootstrap in meboot.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 20 / 35

Programming

Maximizing a Likelihood

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 21 / 35

Maximizing a Likelihood

Example: Generalized Cobb-Douglas production function (Zellner and
Revankar, JAE 1998)

YieθYi = eβ1Kβ2
i Lβ3

i ,

can be seen as transformation applied to the dependent variable
encompassing the level (with classical Cobb-Douglas for θ = 0),

allows returns to scale to vary with the level of output.

Multiplicative error gives logarithmic form

logYi + θYi = β1 + β2 logKi + β3 log Li + εi .

→ nonlinear in parameters, only for known θ can estimate by OLS.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 22 / 35

Maximizing a Likelihood

Solution: simultaneous estimation of regression coefficients and
transformation parameter using maximum likelihood (ML).

Assumption: εi ∼ N (0, σ2) i.i.d. Resulting (log-)likelihood is

L =
n∏

i=1

{
φ(εi/σ) ·

1 + θYi

Yi

}
,

` =
n∑

i=1

{log(1 + θYi)− logYi}+
n∑

i=1

log φ(εi/σ).

where

εi = logYi + θYi − β1 − β2 logKi − β3 log Li

φ(·) is PDF of standard normal distribution.

Note ∂εi/∂Yi = (1 + θYi)/Yi .

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 23 / 35

Maximizing a Likelihood

Task: Function maximizing log-likelihood wrt (β1, β2, β3, θ, σ
2). Use

Equipment data from Greene (2003).

3 Steps:

code the objective function,

obtain starting values for an iterative optimization, and

optimize the objective function using the starting values.

Remarks:

Since optim() by default performs minimization, we minimize the
negative log-likelihood.

Our function nlogL() is function of vector parameter par
comprising five elements.

R provides functions for the logarithms of standard distributions,
including normal density dnorm(..., log = TRUE).

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 24 / 35

Maximizing a Likelihood

Step 1: code log-likelihood

R> data("Equipment", package = "AER")
R> nlogL <- function(par) {
+ beta <- par[1:3]
+ theta <- par[4]
+ sigma2 <- par[5]
+
+ Y <- with(Equipment, valueadded/firms)
+ K <- with(Equipment, capital/firms)
+ L <- with(Equipment, labor/firms)
+
+ rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L)
+ lhs <- log(Y) + theta * Y
+
+ rval <- sum(log(1 + theta * Y) - log(Y) +
+ dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE))
+ return(-rval)
+ }

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 25 / 35

Maximizing a Likelihood

Step 2: obtain starting values

fit classical Cobb-Douglas form by OLS,

starting value for β = (β1, β2, β3)
> is resulting vector of

coefficients, coef(fm0),

starting value for θ is 0,

starting value for disturbance variance is mean of squared
residuals from Cobb-Douglas fit.

Thus

R> fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) +
+ log(labor/firms), data = Equipment)
R> par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2)))

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 26 / 35

Maximizing a Likelihood

Step 3: search for the optimum from starting values.

R> opt <- optim(par0, nlogL, hessian = TRUE)

By default, optim() uses Nelder-Mead method (further algorithms
available).

Set hessian = TRUE to obtain standard errors.

Extract estimates, standard errors and value of objective function:

R> opt$par

[1] 2.91469 0.34998 1.09232 0.10666 0.04275

R> sqrt(diag(solve(opt$hessian)))[1:4]

[1] 0.36055 0.09671 0.14079 0.05850

R> -opt$value

[1] -8.939

Results suggest that θ is greater than 0.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 27 / 35

Maximizing a Likelihood

Remarks:

For practical purposes, solution needs to be verified (local
optimum?).

Function is specialized to data set under investigation.
If a reusable function is needed, a proper function
GCobbDouglas(formula, data, ...) should be coded.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 28 / 35

Programming

Reproducible Econometrics Using
Sweave()

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 29 / 35

Reproducible Econometrics Using Sweave()

R and reproducible econometrics:

R is mostly platform independent – runs on Windows, Mac OS,
and various flavors of Unix.

R is open source – inspection of full source code possible.

R supports literate programming – Sweave() allows for mixing R
and LATEX code.

These slides are produced using Sweave() functionality. For compiling,

first the whole source code is executed, its output (text and
graphics) is “weaved” with the LATEX text,

then pdfLATEX is run to produce the final slides in PDF (portable
document format).

Therefore, it is assured that the input and output displayed are always in
sync with the versions of the data, code, packages, and R itself.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 30 / 35

Reproducible Econometrics Using Sweave()

Example:

We start out from the file Sweave-journals.Rnw.

Mainly looks like a LATEX file, but contains R code chunks beginning
with <<...>>= and ending in @.

File can be processed by R upon calling
R> Sweave("Sweave-journals.Rnw")

This replaces original R code by valid LATEX code and weaves it
into Sweave-journals.tex

In place of R chunks, new file contains verbatim LATEX chunks with
input and output of R commands and/or an \includegraphics{}

statement for the inclusion of figures generated along the way.

Sweave-journals.tex can be processed as usual by LATEX,
producing the final document.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 31 / 35

Reproducible Econometrics Using Sweave()

Remarks:

.Rnw abbreviates “R noweb” – noweb is literate-programming tool
whose syntax is reused in Sweave().

Additional environments (Sinput, Soutput, and Schunk, etc.)
defined in style file Sweave.sty – part of the local R installation
and automatically included with system-dependent path.

In addition to “weaving”, there is second basic operation for
literate-programming documents, called “tangling”. Here amounts
to extracting R code included in .Rnw file.
R> Stangle("Sweave-journals.Rnw")

produces file Sweave-journals.R containing R code from the
two R chunks.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 32 / 35

Reproducible Econometrics Using Sweave()

Remarks:

Basic weaving procedure can be refined in many ways. Can insert
control options in <<...>>= , e.g., echo=FALSE (code not
displayed), also optional name for the chunk. See ?RweaveLatex

for more details.

We already used fig=TRUE (figures required). By default, both
EPS (encapsulated PostScript) and PDF files are generated so
that the associated LATEX sources can be compiled either with plain
LATEX (for DVI documents) or pdfLATEX (for PDF documents).

Running LATEX also possible from within R using texi2dvi() from
tools package.
Source code for example is also contained in vignette in folder
~/AER/inst/doc of AER. View PDF document by calling
R> vignette("Sweave-journals", package = "AER")

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 33 / 35

Reproducible Econometrics Using Sweave()

Using \Sexpr{}: Often want to avoid verbatim sections in reports or
papers and use LATEX formulas and equations instead.

Example: display regression equation with estimated coefficients.

\[

\log(\mbox{subscriptions}) \quad = \quad

\Sexpr{round(coef(journals_lm)[1], digits = 2)}

\Sexpr{if(coef(journals_lm)[2] < 0) "-" else "+"}

\Sexpr{abs(round(coef(journals_lm)[2], digits = 2))}

\cdot \log(\mbox{price per citation})

\]

Output in processed document is The fitted regression line is

log(subscriptions) = 4.77− 0.53 · log(price per citation)

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 34 / 35

Reproducible Econometrics Using Sweave()

Tables: Often simpler to directly use R’s text processing functionality
and put together the full LATEX code within R.

Example: table of coefficients for a regression model

Table: Hand-crafted regression summary for Journals data.

Estimate Std. error t statistic p value

(Intercept) 4.766 0.056 85.249 < 0.001

log(price/citations) −0.533 0.036 −14.968 < 0.001

Furthermore: Packages like xtable, memisc, or texreg put together
“nice” summary tables in LATEX.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 7 – Programming – 35 / 35

